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ANNOTATION

This volume includes the works devoted to the individual

problems of the strength of elements of constructions operating

under conditions of elevated temperatures in the elastic zone.

The theological and plastic properties have been also considered.

Particular attention has been paid to the study of the perfor-

mance of tubular e_ements and perforated plates, as well as to

the problems of the mechanical properties of the material of

tubes operating under conditions of cyclic loading.



STABILITY OF CYLINDRICAL , SHELLS OF

GENERAL FOR_]S OF FIXATION

By

V.V. Kashelkin and S.A. Shesterikov

This work is devoted to the investigation of the large

displacements of the points of a double-layer cyl_nd_'_cal shell

subjected to an external hydrostatic load _ . The shell

of a length 2 _ is formed of two layers each of which having

a thickness of h and separated by a distance of 2_ .

Let us assume that the properties of the shell material,

subjected to spatial loading, can be described by the following

relations [ I] :

£e '_ ' _8 and _ are the main deformation rates and the_¢here

stresses in the circumferential direction and along the genera-

ting line.

Assuming an arbitrary fixation of the end cross-sections

of the shell, it will be possible to consider that the destruc-

tion process takes place such that there are three planes of

symmetry: XOY, XO_ and _OZ. The shell cross-sections in the

planes of symmetry are shown in Fig. (_) . Let us consider

that in the CC'_A zone the shell swells, and in the CC'_B

zone it contracts. Since the main attention is directed to

the study of the destruction process, i.e. the study of large

displacements, then it will be possible to consider that the

shell behaves as a membrane in the XO_ and _0_ planes.



- 2-
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Fig. 1

The effect of the end of the shell lengths is revealed by the

appearance of tensile forces. It is assumed that the axial forces

arising due to the tension of the generating lines on the OC'B'B section

of the shell have resultant forces that are d/stribu_ed along the BC arc

with a densi_7ofti(S ) -const, and are directed along the O_ axis. Also,

it is assumed that the resultant forces of the axial forces acting on the

CC'A'A section of the shell are d/s_ributed along the CA arc with a density

of t2(S) = oonst and are directed opposite to the OX axis.
Let us now investigate the process of destruction of the mean cross-

section of the shell, which satisfies the equations of equilibrium in _he

points _,C and A. The mean cross-section is destroyed according _o the

scheme given in Fig.(1) [ 2 2 . For the first stage of destruction, the

geometric relations are expressed by the following equations s

£# cos _ ,Xe, sl._ . yo= g

0. g=* (R,-R.)=it, q, ,

8. g,-(R -R=)co_ _ ,

7i

_=

g_ -ga

where L is the length of the BA arc.



-3-

The equilibrium equations of the _ and CA seotions for a mean

seotion of a shell of unit width will have the following form t

2 Z
-a z ) ,+

o_ z z 2

{2)

where T, and T 2 are the resultant foroes t (S) and t (S), and. Mo(t+)

_d. (++) ar+ the =omentso+ the +oro+sti(-_) and t_(S) with +esp+ot
to +o+nto.

The moments M=+ B for the double-layer shell oan be easily oaloulated_

The remaining notations are shown in Fig,(2) .

Let us assume that the generating lines BB t and AA' are desoribed

by the following relations =

+(,I.+(+. "' ].(, +Jim.-

, _z )1.. .+]+(e)(_, _,,_T ,

] +
'+ (+)(1+cos "_++)]

(3)

where 0_< _ .< I.

+!,+ + .
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At _ = 0 we have the case of rigid fixation of the end cross-sections,

whereas at _ = i we will have the case of hinge supporting of end cross-sections,

for other values _ will correspond to the cases of elastic fixation of the
end cross-sections.

The running length of these generatin_ lines will be given by:

. 12e _

t I

: (-D) ,'o,<-+o-,),,.7 }'4t )
@

THis de£_rmation lead_ to the rise of tensile stresses _ in each point

of the generating lines BB' and AA'. Since in the XO_ s_n_ _OZ planes

the shell behaves as a membrane, then 6_ will describe the average

stress across the shell thickness and will be directed along the tangent

to the generating lines BB' and AA'. Let us assume that 6_ is constant

along the shell length. Cutting a strip of a unit width along the genera-

ting line BB' (AA'), let us consider a section on this strip! the coordinates

of its end projections on the OZ axis will be z a_ _+_. Projecting _he

initial forces, acting along the strip, on the OX and OY axes, we get :

.... ]-;; .....;,, ---,
<,, a'v , i_z 6 i 2h-_-_ 8,t - 6_ 2h _ 5,

there are further on the subscript "i" refers to BB' and the subscript

"2" to AA'.

Naturally, i# and _2 depend on the coordinate _. Since we are

basically concerneE with the destruction process in the middle of the

shell, then the value of the second derivative at _ = 0 will be satisfactory.

However, if a certain mean value t{(_ - 1,2) is introduced along the whole

length of the shell, then the following expression could be used to represent

the forces

t, =_ 7i:_ Ce- v,)_°', , _, : _,_- (z-v,)_i

For the rates of deformation in the circumferential direction and along

the O_ axis, the following expression is obtained i

0 i 0 '

• ° (4)
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where _ is the rate of variation of the curvature.

Taking equations (4) into consideration the following expression

is obtained from (I) for 60

"D

0

Taking into consideration that the shell is double-layered, then

the moments M a and M6 could be calculated s
----- ------7

Ha= OZ

"°'_e °'h#z-6_ 6 e

s,"C_o... (i;, -_e,)][2i_'.(s; . 8_,)]

(5)

Let US derive the parameters T1,T2,_o(tl) and Mo(t2) for the first stage
of the destruction process

T,.t,$ .t /_e, P , T2 =f.. 8z.ta Rz[-TZ -_)

More
SI is the length of the BC arc, and S2 is the length of the CA arc.

,tOt,). !eM (t,) , _Ct,)-S eM ¢t )
@

where

dl,'tCt,)=#,h, dS, d,'W (_): t /I d_
c Z 2 Z

and hI and h 2 are the arms of the corresponding initial force,

2

(_s_n: *cos _- r)

_ (t_)" _Ro _ _ -s_)co_:_s;,_,:- I
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After transformations, the equations of equilibrium can be wri%ten

in the following form I

6i;'&° _ h__ 6°,

• ".c_;. 8,_o)1 '

6 oz z 9 z"rz , _o _, =7- (°z x° _. ) ,

• Of

6t_' _8 _z h,_ _

O!t_°"tq _*,);[z_,. •(C. 8,,_1
OZ

"t_6= xo '¢s _ " (6)
i

6z*, _ q- z X = y-[, x,_ =_C8 - 0- o ) ,

where

j-,,/_/p

7 C,-÷)
h= hol-p

_, : ,e ( t - ,i,, _ ) ,

2

4_,=s"si. _ ,' :os V' - f ,

,t,= . ( _ - ,e J _os q' • _,, ,_ - t,

Let us introduce some additional notations =

ch= = s_n,,4, - q' cos _ ,

ch, = ( _ - '_ ) sLn _ - cos _' ,

% : cos '_ -cost '

_'z = sln_ - s,Sn=_ ' .
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The functions _(t) aria o_ (t) are expressed through 8(t) and _ (t) as

follows :

js/t) ; so -8(e),

o<Ct)= ,,[_)- ,_
0

Taking into consideration the geometric relations and introducing the

given denotions, we get for _ and _ the following expressions

Utilizing the expression for the running length of the generating line

BB' (AA'), the values of the rates of deformation _; are derivea :

•o_ ( _-] 2

"°' _,o,(_ ) z

Concerning the rate of deformation of the mean surface in the circum-

ferential direction, we take the value of the rate of deformation of the

mean surface of a ring of a radius R m = _(Ra°+ Ro. ), subjected _o an

external hydrostatic, load of q! the thickness of the ring being equal to

2h. Assuming that £- B_ m for the ring, where _ - qR_/2h, and that

A B(RJh)m .e get

o q.)_

According to the assumptions m_de for the geometry of the shell cross-

section

,  o.C'o>
Let us introduce the dimensionless parameters m
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and express the time in the following d/mentionless form

_'=/o 2 _,

Further, differentiate with respect to _ and omit the dash of the dimen-

sionless parame%ers.

After transformations, the system of equations (6) takes the

following form s

,_=+%_ +% ,a, •ar 8 a 8 a

8 3 = # a Z '

The ooeffioients of the system of differential equations (7) have the

following values s

.Z ot -_

' Zt ,I

a s ) % N ,

Lr =- H?

o, -2 8 . z ,, 77 . _
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71" 2

=

• Z

/. =-
2 2 t

ot _ o: R z
N#- [,6 _;,/_._6 _':6l _z a "P'O R a (l_ 6-/_" ) ,

o, . o,_ too' p_R C,_e-_° )_--Ls' CzRaRo f, 6t , 8- o

The system of equations (7) can be solved on a digital computer

by the aid of standard programs.

References
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METHOD OF CALCULATION ON THE DESTRUCTION OF

CYLINDRICAL SHELLS UNDER THE CONDITIONS OF

CREEP

A._. Lokoshchenko and S.A. Shesterikov

The analysis of the behaviour of a cylindrical shell, subjected to

an external evenly distributed pressure under a high temperature, is

basically concerned with the determination of time, during which the shell

can withstand the applied load. The whole method of calculation of such

shells can be divided into four stagess analysis of the geometry of the

shell, elaboration of the creep curves of the material, determination of

the destruction time of the shell under stationary conditions, and evalua-

tion of the effect of temperature and pressure fluctuations during the

destruction time. Such a classification allows the successive determination

of the nature of the made assumptions and the magnitude of errors resulting

in each stage.

Let us consider a long cylindrical shell whose cross-section has a

small ovality. The service time of such a shell under the action of an

external evenly-distributed pressure $ depends on two geometric factors,

viz. the ratio of the thickness H to the mean radius R. and the coefficient

of initial ovality L1.o z

where 2a¢o and 2%o are the maximum and minimum diameters of the shell

cross-section before the application of the pressure. The case, where the

shell has an excessively large length in comparison with the cross-sections

to the extent that the effect of end fixation can be neglected, will be

considered below. In this case, the destruction of an oval ring of a unit

width under the action of a hydrostatic pressure will be considered.

Under stationary conditions the hypothesis of a steady creep with an

exponential function of # for the rate of creep in the stress 6 [ i] is

the simplest hypothesis, which sufficiently describes the time characteris-

tics of the material in an integral form ,

= B6-" (2)
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where p is the creep deformation! the dot denotes differentiation with

respect to time. The coefficient B and the exponent n, which are derived

from the creep experiments, denote that the material depends only on the

temperature T.

In the investigation of the behaviour of oval rin_s most of the

authors (as for example _ 2 J ) have considered that the deviation of the

mean line from the circle is proportional to the cosine of the double

polar angle. In ,_ 3_ , the pure moment stress condition of a nondrcttl_r

ring has been considered. The form of this ring at any given time is

approximated by the conjunction of two &ros of circles with radii _ and

R . The examination of this form of the ring (see Fig. i) allows t_
2

investigate the deformation of the ring close to the moment of destruction.

Let us consider the destruction of such a ring in the case of a non-

linear creep [ 2] taking into consideration the deformation _o of the

mean line. Three geometric hypotheses will be adopted, i) the form of

the mean line is approximated to the connected arcs of two circles (see

Fi_. i)! 2) the change of length of the mean line due to creep deformation

can be neglected

' _ ° (:3)

and 3) the hypothesis of plane sections for the total deformations

e =E. - xz (4)

( _e is the variation of curvature and E is the coordir_te along the

normal to the mean line). The geometry of the mean llne is determined by

means of the following three parameterss _, R 2 and _ . For the deter-

mination of these parameters let us derive%he _quilibrium equations of

the elements AA considering that the moment is equal to zero at the

conjunctionpo_n_A°(_S)

_o,.:e'::.,)_,]"[:_o,,o,5_,.:"-(_o,-o,_-_,.)"'],

2.XZ 2 -Io,5_(o, o-_o')°[::+'):i'"_)8:_] [o,:::÷2)::_,::'_o- (_)

)'" )'"],:_o:)_"(_o, }:

i = 1,2, in = 1. i

These relations are obtained under the assumption that in the analysis

of the process of shell destruction it is possible to neglect the
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instantaneous deformations as compared with the creep deformations. The

subscript _ indicates the point of the ring (_ or A2) to which the corres-

pond/n_ value is related. The ooord/nates oi, a_, Xo and 9o can be easily

expressed through the main geometric parameters s

a .+R +(R -R,)s_n_ , a .R z-[R z-R,)eoS _o ,

(6)
COS %P,_o; R 2 s;.n_ , Yo: _,

The system of equations (3) and (5), in addition to substitution in (6),

consists.. of five equations for the determination of R4s R2, _ , _o_ J and

£02 • The general form of this nonl_near system can 'be solved only

numerically. However, in the case of a very small initial ovality of the

ring Aoo the destruction time of the ring can be simply evaluated in terms

of the other parameters. Let us introduce the property of ring bending

A(t)

a,,Ro(,+_) , a,_ e,o(_-_),

If we linearize (5) by A and make the necessary transformations, it will be

possible to get for _ the following differential equation :

n_

FI 6. I

It is clear that the destruction process is terminated when the condition

_(t _) -I is fulfilled. Substituting this equation in the solution of

equation (7), the following expression for the destruction time could be

obtained ,
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The parameter _o , characterizing the ovality of the ring as a result of

application of pressure, - is related in the case of elastic load/ng to

the parameter of cvality of the loaded shell Aoo by the following relation-

ship s

), (9)

Equation (7) is obtained from system (5) when the first orders of A are

o_y preserve_. In the corresponding system of reference [_], the terms with

/_- were preserved and an expression was obtained for the destruction time,

which could lead, in certain cases, to incorrect values (for example, at

n>8). Such a drawback is not noticed in equation(8). In addition to the

ind/cated work, some relationships were derived for the destruction time

by several authors in the solution of a similar problem by other methods.

Let us compare the results of calculation using these relationships for

the case of n = 3.

Introduce the dimensionless parameter of the destruction time

Therefore, equation (8) can be written in the following form I

o.o Tt, (,/,, ).'o (n)
w

According to Hoff and others _ 5 ], the expression of _ , taking into

consideration the equation of transition from the model shell to the real

case, will have the following form s

*= o.o35e,,[,-, o. ,, ,,. )'.1 (12)

Yu. _ Volohkov and Yu. V. Nemiroviskii [ 6 ] have obtained the following

expression for 1"_

The times

z '( = o, o17._/Y_/(Ro ," o ) z (i3)

caloulatod according "t,o equations (11)-(13), are given in

table i at H/Ro = O. 01, and in Table 2 at H/R o - 0.i.

Let us now represent equation (8) in a more general fo_. Fro._ Fig.(2) it

follows that the following condition should be fulfilled, i.e. for the given

(_,eo = H,_ , (14)



- 14 -

pressure _ it is possible to introduce the average oompression characterized

by the stress do . Using the replacement (14) we get from (8)

- T

The left part of (15) oan be represented by the aid of (2) in the following

form

= B_ t

where p_ is the creep deformation in the case of pure tension, aooumulated

under the action of the mean stress _= for the destruction time of the

shell. Finally, a relationship in the following form is obtained =

p Co.2/,,:(/.//Ro)':,, (z6)

Equation (16) expresses the following condition: the process of ring

destruotion is determined in the case of creep when for the given shell

parameters (H, R@ and Aoo ) a creep deformation (given by equatlonCi6)) is

acoumulated.

Table I

H/g[ = 0.01

10 -3 10 -z 20 "'

(21)

(22)

(13)

0.460

0.222

2,75

0.310

0.020

0.0175
0.154 ]
0.0001

0.0002

Fig. 2

(ll)

(22)

(13)

10 -8 I0 "z 10 "f

0.460

0.282

275
0.310 [ 0.154
0.122 0.020

1.75 0.027
.n .....
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In the application of equation (16) the calculation of the shell in

the stationary conditions is conducted as follows. The geometric parameters

of the shell (H, R ° and Aoo) are first determined. A series of tests on

creep are then conducted for the determination of the value of n. From the

series of creep curves_the curve corresponding to the mean stress _o is

chosen according to (14). On the selected c_trve the value of pw , obtained

from (16), is marked and the time t _ is subsequently determine_

The described method has the merit that only the creep parameter

(the index n) should be calculated, whereas the original creep curves are

used instead of the coefficient B.

The investigation of the shell destruction can be extended to the

non$tatlonary conditions (unsteady creep, as well as variable stress and

temperature). Since the available experimental data on creep under non-

stationary conditions are very limited, it oowld be assumed, as a first

approximation, that expression (16) remains valid under these conditions.

The only property of material (the value of n), included in (16), can be

considered as independent of the temperature T. Therefore, the problem is

reduced %0 the determination of p_ from the given conditions of T(t) and

_(t) (the stress is related to pressure through (9)). The following

method is more valid: stationary tests on creep are conducted under the

given laws of variation of T(t) and6 (t), and the destruction time t_ ie

determined graphically from the obtained curve p(t) according to the value

of p* calculated from (16). If the curves of creep, for the given range

of stresses and temperatures, admit an analytical interpretation in the

form

i °/,Cp L Credo" (17)

then, by integration of (17), for the given laws of variation of T(t) and

6 (t), a relationship for p(t) could be obtained from which the destruction

time is determined using again (16).
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EXPERIMENTAL INVESTIGATION OF THE DESTRUCTION

PROCESS OF CYLINDRICAL SHELLS AND UNDER THE

CONDITIONS OF CREEP

S.£. Shesterikov, v.V. Kashelkin, E.A', Myakotin

and V. _. Nikolaev

Very few experimental works have been published on the process of

creep buckling of metallic shells. This is related to the tremendous

difficulties encountered with on setting up the experiments, and the

long duration of the tests.

One of the first works devoted to this subject is that of Hoff [ i _ .

This work includes experimental data on tests of 43 aluminium cylindrical

shell6. The shells were tested on bending under a steady moment at 260 °.

After a short period of creep, when the rate of creep was slowed i_down, the

end section of the cylinder was continuously turned with a constant speed

during a long period of time before the buckling of the cylinder. It was

found that buckling took place in the zone of maximum pressure at one end

of the cylinder or in its middle. The comparison of the experimental data

with the theoretical values _i,2 ] gave satisfactory results.

The basic section of the work of Gerard and Gilbert [ 3 ] was devoted

to the experimental investi_ion of creep buckling of thick-walled allminium

cylinders subjected to compressive and torsional loads. Two series of tests

(each using 18 specimens) were conducted on compression and torsion at a

temperature of 3400 . In conclusion, i% was stated that the method of

critical deformation [4 ] was somewhat successful in pred/cting the critical

time of cylinders under compression and torsion. The conception of Gerard

subjecttocriticls byHoff.[ 5J, whonotedthatthee eri ents[3]
conducted on thick and short cylinders are not satisfactory.

In [6 ], the results of the experiment carried out on long cylind.r_cal

tubes are given. The displacement of the extreme points of the smallest

diameters of these tubes was measured. Loading was held when the rate of

displacement began %o increase intensively. This time was considered

critical and was compared with the theoretical values. The authors consi-

dered that the comparison of the theoretical values with the experimental

results i8 not reliable, due to the impossibility of measuring accurately

the initial defects, the large scatter of the data on creep, ... etc.

The work of N.M.Matchenko [ 7 ] represents the experimental data

obtained on the stability of cylindrical shells, compressed from both ends

under creep conditions. Two series of tests were conducted on lead speci-

mens at room temperature. In the case of loss of shell stability_ solid
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annular swellings appeared and the effect of bangs was not observed. The

critical time was taken as the moment at which buckling appeared, which was

determined according to the change of the character of axial deformation.

The obtained time was high in comparison with that given by equations.

These equations lead to the replacement of the secant and tangential modules

for the calculation of the critical load t 8 ] by new time dependant genera-

lized modules.

In the work of A.S. Wal'mir and N.G. Zykin [9] experimental data are given

on the stability of compressed rectangular (in a plane) cylindrical panels

of duraluminium under the conditions of creep. The tests were conducted

on ten panels at a temperature of 250 °. The properties of the material

were described in accordance with theageing theory. The bending-time

curves were plotted for panels with different values of initial bending

and at different compressive stresses. For shells with a given value of

initial camber, the critical time fell abruptly with the increase of the

compressive stress. For loads constituting 90-95% of the critical elastic

load, the critical time amounted in several oases to few seconds. The

experimental data are in good agreement with the calculated values as far

as the criterion of initial inconsistencies is obeye_

The paper of A.P. Kuznetsov and N.M. Yungerman [ i0] represents the

results of the experimental investigations carried out on the stability of

duraluminium thin-walled cylindrical shells under the conditions of creep

on compression and pure bending. The specimens were tested at a temperature

of 2550 before the moment of their actual destruction, which instantaneously

occurred "as a ban_'. The following parameters were measured: the rotation

of the end face cross section, the displacement of this section in the plane

of action of the moment and the shell destruction in the mean section, and

the longitudinal compressive deformation. The compression tests were

conducted on 38 shells, and the bending tests were performed on 34 shells.

In the compression tests the loss of stability took place with the forma-

tion of 6-9 half-waves along the circumference and 2-3 raws of half-waves

along the length. The shells, whioh have lost stability, had the same

shape as those after the instantaneous loss of stability. In the bending

tests the waves were formed in the compression zone. The form and dimen-

sions of these waves were close to the waves formed in axial compression.

The creep characteristics of the material were determined by specimens

made of tubes. The loss of the shell stability in the case of creep took

place under loads above or below the lower critical load. The large

scatter of the results is due to the fact that all the shells have

different initial defects and the creep characteristics, themselves, have

a considerable scatter. The general deformation, at which loss of stability

takes place in the case of creep, is less than the elastic deformation

corresponding to the upper critical stress. However, this general
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deformation is higher than the elastic deformation corresponding to the
lower critical stress. The scatter of the experimental data increases
with the decrease of stresses, i.e. with the increase of the creep defor-
mation. The sameconclusion about the values of the critical shell
deformations in the case of compression under creep conditions was theore-
tically obtained in _Ii_ on the basis of the nonl_near equations of the
shell, where the ageing hypothesis was assumed for the creep of the material.

On the basis of the experimental results, it was concluded that the value

of the critical time of loss of stability of shells under creep conditions,

obtained according to the value of the elastic deformation corresponding

to the lower critical compressive stress of shells with high significant

initial defects, renders a _uaranteed lower limit for the critical times

of compression and bending.

In the works of SamuelSon _12,13_ , the results of the experimental

investi_tion of the buckling process of shells subjected to a stead.v axial

load and to bending are given. He used shells made of aluminium alloy,

and the test temperature was 2250 . In the experiments, it was observed

that the form of the shell is asymmetric. On all the curves of axial

deformation vs. time it was noted that there is a section of accelerated

creep before the loss of stability. The results were processed according

to the ageing theory.

An investigation similar to that of the stability of aluminium

cylinders, subjected to axial compression, was conducted in E141 .

The large volume of published theoretical works devoted to different

aspects of analysis of the processes of destructibn and loss of stability

of thin-walled elements under creep, i.e. evidently insufficiently confirmed

by experimental investigations. These investigations would have, at least,

qualitatively confirmed the hypotheses postulated in the investigation.

This gap significantly influences the choice of further trends in the

investigations, since few of the simple schemes used in engineering methods

of calculation require experimental confirmation. For the study of these

problems it was decided to conduct a series of experiments on cylindrical

shells, subjected to an evenly-distributed external pressure. The results

of tests have allowed to derive the relationships, suggested for the

description of the destruction process of the shells.

On the basis of the analysis of the destruction process of the shells,

a simple relationship of the following form was previously obtained:
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where t

2h

Ro

_0

is the time of the destruction process, in hours!

is the thickness of the shell wall, in ram!

is the average radius of the shell, in mm!

is a dimensionless parameter characterizing the initial

defect of the shell!

is the pressure, in kg/mm2!--

n and _ are the characteristic parameters of creep.

The parameters n and A are determined on the basis of the experimental

creep curves for the corresponding test temperature. It is assumed that

the rate of creep _ is related to the applied stress 6 according to the

following relationship :

In the high temperature testing laboratory of the Institute of

Mechanics of Moscow State University, the creep of tubular specimens made

of steel K_8NIOT was tested on IMEKH-5 stands under stresses of 1,2_3,4,5,6

and 8 kg/mm _ at a temperature of 850 O.

The description of the test rig, the procedure of testing the creep

of tubular specimens, as well as the obtained creep curves are represented

in the Nil reports No. 1006 and 1120 of the Institute of Mechanics of Moscow

State University.

As a result of treatment of the creep curves, the values of the creep

parameters were obtained from the condition of the minimum values of the

mean devia$ions for the indicated stresses and temperature :

"_ ,_a" -3.28 !,,= 3.2 , x = 8. 2.
_'ho_r

By substantiation of the method of calculation of shells in the case of

creep stability, and checking the previously obtained relationships, a

series of tests were carried out on two rigs allowing the examination of

cylindrical shells under external pressures and at temperatures of up to

i000 o.

The obtained results indicate that the destruction times, measured

in the experiments and determined from equation (1), have the same order of

magnitude, assuming that the initial inaccuracy is of the order of 0.01-0.001.

The conducted measurements of the shells before testing have shown that the

initial inaccuracy amounts to _ 0.002. The results of the tests and the

calculated data are demonstrated in Table i.
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0,5

0,5

0,5

0,5

0,5
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8,90

850

85O

850

85O

85O
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1,0

1,0

9,0

!,0

1,3

1,4

1,8

1,0

1,2

1,4

5

Bpe_,¢_ B(_
qacax 3K-

cnep.Meli-

TaYlbliO

cax TeopeT_

_ecKoe np_

t = 0,01 /

84

135

3,5

29

II,3

8

4

112

51

23

8

190

55

5,6

21 ,S

9,I

7

3,12

85

46,5

27,8

5,1

!

K_e.x., i-No. of specimens; 2- Specimen diameter; 3- Wall thickness;
&- Temperature; 5- Prezsure p, kg/cm_; 6- Experimental time , in hours|

7- Theoretical time, in hours .
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DETERMINATION 0F THE_ DES TRUCTION TIME OF A CYLINDRICAL

SHELL UNDER UNSTEADY CONDITIONS

By

A.M. Lokoshohenko

The process of destruction of a ring under creep conditions, subjected

to an external evenly-distributed pressure of _, will be approximately

considered. It is assumed that the form of the ring of thickness 2h and

of unit width is insignificantly different from the circular shape. In

deriving the solution, the deformation of the mean line is taken into

consideration. It is also assumed, as in [13 , that during the whole

process the ring has two axes of symmetry, and that the maximum and minimum

diameters (2a_ and 2@2) of the ring are the basic parameters. The destruc-

tion is defined as the condition when the minimum diameter of the ring

tends to zero.

Apart from the generally adopted hypothesis of plane sections, we

consider, as in _i ] , that at any moment of time the ring cam be approxi-

mated by the conjunction of two circles with radii _ and R 2 (in Fig. I,
the first quarter _s only shown).

Let ms investigate the umstead_ behaviour of the ring, where the

properties of its material can be described by the relationship between

the stress _" , creep deformation p and the rate of deformation _ in the

form of the theory of strength_

(1)= Bp'_ -" ,

Ai

az_°(z°'_ °)

Fig. i

where B, _ and n are constants for the given material. For simplicity,

n is represented in the form of the ratio of two integer odd numbers,
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whereas o6 is given in the form of the ratio of an even number to an

odd one. The parameter _ will be define_ as the d/stance between an

arbitrary point of the ring and the mean line dividing the width to two

equal halves. Therefore, on the basis of (i) and the hypothesis of plane

sections we will have s

6"(:'P_e)r'-[(i°"_/'_):_°_h_)_/8]r,In'' (2)

where £o and ;6 are the deformation and the variation of the curvature

of the mean line! the dot denotes that differentiation is carried out with

respect to time _. If equation (2) is used and the equilibrium equation is

written in a general form, a system of nonl_near differential equations is

obtained, which can only be used for numerical calculation. Therefore, an

approximate method for the solution of the problem will be only given. For

simplicity, it is assumed that the deformation of the mean line and curvature

in each point vary with time according to the same relationship, i.e. it is

assumed that a time function 8(t) is operating (varying from one point %o

another), which makes it possible to determine the deformation and curvature

in each point of the mean line from their rates I

In both relationships, the function 8(t) is the same.

The behaviour of the ring is investigated as in the analysis of

buckling of a viscoplastl¢ rod [2 _. (_ will be taken as the ratio

_o/(Pu_). From (2) we then get _

.. _. 8-r_,-,tC,,_)"'C_-,)"" , x_ Ca:.f)lT_f

Now the resultant force and bending moment in an arbitrary cross section

are calculated :

!

@ , h Jddz = B'r S_r,_ (x") h =K"9 ' ,
.!

f

M- ,,']' 6;,,/, - 8t_ x"_ '""h:"'_x"(x")"(¥_ -x_)
-!

In the last expression the functions _ and _ were introduced for the

sake of accuracy. These functions are determined as follows :

÷C_") __.(y,,)" (g.,)_, _oC_,')_ (3)
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The equation of equilibrium of a ring of unit width will be satisfied in

points A_ and A_ (see Fig. I), (it should be also taken into consideration

that the Abendin_ moment in the point of connection of the two circles A o is

equal to zero). Let the coordinates of point A o be denoted by Jco, y..

The equations of equilibrium in points _ and A 2 will have the following
form :

., , (_'-,)
tpo i = B "T h X _ .: T K act, V' ;

(K4,J _i, t_"}

Za, z ,) h _a,Sar "'Co "Yo "=

(4)

Here and hereafter, the subscript _ and the acquired values I and 2,

indicate that the corresponding function is taken in point _ or A 2, The

system of equations (4) can be reduced to the following form s

Let us investigate in details the right hand side of the second equation

in (5). Referring $o (3), it is possible to show that at y_._l this part

of the equation can be approximated to the following form with an accuracy

of up to _'_

_. - ,,,:_ (6)3y,:

Even at Y_ = i the divergence is extremely insignificant , (K2l)/3 as

compared to the accurate value (K-1)I moreover, K varies in the range of

i to 2 (see [ 3] ). Consequently, the relationship (6) can be practically

applied up to _ - I. On the other hand, at yZ<Q1, we have x

(:k_,_I_ )-_ -_ _ly_ (7)

_xpresslons(6)and (7)areverysimple,and thef_otions <f__d _,
can be expressed through them. Substituting in (5)_ we get a system of two

nonl_near differential equations solved with respect to their derivatives.

In this case the system has a very simple form and can be integrated by

means of a digital computer using standard programs.

Let us now find an approximate value for the destruction time of

the ring (t_) in the o&se of a small initial ovality. From [i] it

follows that such a ring maintains a small ovality during a time of_ 0. gt_.

The small ovality of the ring corresponds to the case y_ _ 1. Then, from
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(5) and (6) we have ,

_/_ _ _(a_- _.-

For the function _6 the following approximation is obtained s

_'_ 2.y["" [ 2(s¢'')hal J"'
l_i a_ -x_Z_o )

(8)

Substituting (8) in (5) we finally get ,

I

(9)

From Fig. 1 it is olear that s

(lO)

Let us take the condition _ -- .

get x 4

Introducing the mean radius P_ we

R ÷%:2Ro , (n)

Let us now introduce the ovality parameter _ as follows s

(12)

The ovality parameter LIo of the elastio ring is related to the parameter

Zkoe of the unloaded ring by the following relationship

where _e is the critical pressure according to Eiler [ 4]

young modulus.

_rom (lO)- (12) we win get ,

and E

R_=R_CY-_._) , R_.=_(Y"F,"-_) , Z_#---("/+Ir2")A (14)
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The relationship (9) acquires the following form =

From this equation it is possible to get the approximate value of variation

of _ with respect to time s

, . f )

(g-f)h I, "_h-_ / = _. '

&=÷f

By integration we get =

-!

A(O = _ _D_] (15)

As an estimate for the destruction time f,. let us accept the

condition Zk (t,) = i. Moreover, let us take into consideration the
.¢¢

condition do _ _ and the relationship (15). Therefore, the final

equation relating the destruction time of the shell with the material

characteristics, the shell parameters and the magnitude of the approximate

pressure, will acquire a very simple form :

It is easy to note that in the case of an unsteady oree_ (o< = O),formula

(16) coincides in transition with the corresponding expression obtained

from (5).
Similarly [ 5 _ it is possible to introduce a mean value for the

compressive stress arising in the ring due to the action of pressure _,

which can be expressed in the following simple relationship I

If the creep curve for this stress 6 is derived, we will have a relation-

ship of the following form =

_6 =/3p -¢ _n
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Considering 6 as constant, it will be easy to get the following relation-

ship s

2h " (oc+ (17)

Combining (15) and (17) for any oc =/=0 we ge_ !

= -
(_-_) _+I

+I( _)2(,_-+0 P ('_-,-0

Resorting to the same method followed in the derivation of equation(16), we

will have a deformation p* corresponding to the moment of destruction s

By the aid of (18) it will be possible to determine the destruction time

tl on the creep curve, by the value corresponding to the pressure 6 or

the time during which the deforastion p_ is accumulated. In equation (48)

the parameters n and cc of the material are included, whereas the original

creep curves are utilized instead of the coefficient B.
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STABILITY OF ARCH IN THE CASE OF CREEP

V.V. Kashelkin

Let us consider the problem of stability of a sloping arch, subjected

to an evenly distributed pressure $. In similar constructions, a loss of

stability in the form of a "clap" is observed. This loss of stability

can be discovered only on the consideration of the geometric non1_nearlty.

The arch is deformed in the case of oreep_ and the properties of its

material can be described according to the theory of workhardening [ 11

by the following relationship s

where p is the creep deformation

is the stress

n is the creep index

c_ is the workhardening index.

Fig. (1) shows an arch of a length _ and height Co, and which is hinge

supported from both ends. It is assumed that the arch axis represents an

arc of a sinusoid

= Cosin __Z
/

The arch has a rectangular cross section of a height 2h and width b.

Fig. i

For the solution of this problem let us adopt the combined variational

principle, postulated in the work of Sanders, MoComb and Sohleohte _ 2 ].

This principle is based on the simultaneous variation of the field of creep

rate and the field of stress rate, as shown in Pian's work [3] .

For nonlknear problems, the function is expressed as follows ,

I • , I "M

:! t , , ,jo.,, - n,i , )a,j] -
e-! _ (;'i ';, )as- _ ÷/ ;,,,_s ,

• Z. Zr

(2)
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where
_j

eq

e_

is the stress tensor;

is the tensor of total deformation;

is the tensor of instantaneous deformation;

is the tensor of creep deformation;

a_ is the displacement!

e
is the section of the surface in which the deformations a_
are given! e

_r is the section of the surface in which the forces T_ are given.

The dots denote differentiation with respect to time.

In this case it is necessary to get an exact expression for the

component of deformation, namely s

eq = _. ('u.q + u_, ;. + u._.,;u._,,_)

Denoting by _ the distance from some polnt to the arch axis 9 we have

according to the law of plane cross sections =

Now the function (2) can be reduced to the following form :

hi ---
f • 2

-h 0

g' dP-%"]dyd 
_E

(3)

Here, it is assumed that the instantaneous deformation is elastic. Accor-

ding to [ 3] , it is also assumed that the arch axis preserves its sinu-

soidal form, and that the moment is distributed along the arch according

to the sinusoidal law. Therefore I

Y/x )FX
W,,= c s i.n -T ='zc.s/_ T

12--0 ,

Y sZn FX'6 : (%. % T ;

(4)

_2gE
Here 6e = _ is the critical Eulerian stress for a beam of length _!

_, _o and _ are dimensionless parameters.

Substituting (4) in (3) and varying K with respect to _, _o and _ ,

we get a system of three equations.

As a first approximation, let us assume that the creep deformation

is equal to s
2

f fzc._ _
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Introduce the dimensionless time parameter Z" as follows ,

-2o(. n - ,l

r = (_rc._ 6-_ _t (5)
2-_-i

Omitting the transformations, the final form of the system of equations

is obtained, in which differentiation is carried out with respect to the

dimensionless parameter of time:

(6)

- )-¢XC_ )_-_ic". '_, (_- I x,--o "i

Here k and _ have the following values :O

c_j
'[ ; ,.-,,,.,,,,,}K o'-_ 2_ ÷ Z V: 6o 6,

.'n . f l'n

_-(Z,,n-O Z,-'#

I m o f
_rit s ....

where

,,(,-,)...[.- {_=,. _)]
(2,,,_!

,,Y,-,)...[,,-t'2._-2).7

(Z,.- I)'

7 Z_-I

,.3.5...{2,,-,)(7)

2"#'8.., 2rr/ 2m+f

,.J.5...,'_-,-,,_r_)'_"
2._.6... 2rn 2rn+!

The initial conditions of equations (6) can be written as follows [I 3 i

The parameters _; , _oi and _i represent the values of the corresponding

parameters obtained immediately after the application of the load. If we

consider that the instantaneous deformation is elastic it will be convenient

to utilize the variational principle of Reissner, assuming the same distri-

bution of stresses and displacements as in the case of creep.

In this case, Reiaser's function acquires the following form :

_t f

,<:,s
-h #
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Calculating this function and varying it with respect to _ , _o; and _¢_ ,

we get the following system [ 1] =

2

--0

where Y is the moment of enertia of the arch cross section. Excluding

_o_ and O-_L , we get the following algabraic equation for _i =

Z 3
C'o

where

: ! 9, e 't I

2as Es co (7)

From (7) it follows that _ as a fUnction of ,_. attains its extreme value
at

=l? =+_ ;, ;or "

•Co Z l
(8)

C. :2
If(R ) < _ , the deflection will proportionally increase with the l oad_,

Co_.. ¢ ....
if (_-_)_'T' when the critical value of the load parameter _cr is attained

a clap is produced and the deflection will instantaneously vary according

to a definite value. The critical load oan be derived from equation (7) if The

value of _er ' given in (8), is substituted in it.

Calculations were conducted for the arch, for which

9

3
at n:3 a_d _ : O_l j2
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The results are shown in Fig.(2)where the strong dependence of the process

of arch deformation On the value of o¢ characteristic of workhardening is

clear.
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THE BEHAVIOUR OF A HIGHLY CORRUGATED=______A_PLA_E

UNDER AXISYMMETRICAL LOADING

A.M. Lokoshohenko

Let us consider a highly corrugated annular plate (shell of revo-

lution) subjected to an axisymmetrioally distributed pressure _ and a

centrally located concentrated force P (see Fig. I). A is the internal

radius of the plate, R its external radius, and h <<R its thickness. The

external contour of the plate is fixed, whereas the central rigid circular

disc of the radius A can move along the axis of symmetry. Moreover, the

boundary conditions of the plate correspond to fixation along both contours.

The plate is made of an elastic material with Young modulus E and Poisson's

coefficient # .

The first investigations on corrugated plates were confined to

deflections of the order of the plate thickness. The longitudinal defor-

mations, as well as the square of the tilt angle _ , compared to unity,

were neglected. D. Yu. Panov E i_ considered finely corrugated plates by

the application of Lyav's theory of thin-walled shells and solved the

problem in series analysing the produced functions into powers of the

parameters of loading and corrugation. V.I. Feodos'ev E 2,33 extended

IItI11111

Fig. I

Meissner's equation to the case of deflections of the order of thickness

and used Bubnov-Galerkin's method for the investigation of the stability

of inclined corrugated plates. L.E. Andreeva K4J replaced the corrugated

plate by a flat one and considered the influence of corrugation by intro-

ducing the coefficients of anisotropy in the radial and circumferential

directions. L.E. Andreeva [ 5 _ has investigated the behaviour of such a

plate by. the aid of V.I. Feodos'v's equations [2] . E.L. Aksel'rad [6,73

has derived the equations of non incllned shells of revoluation in the case

ofexistenceoflargeaeneotions(seealso[8]) Howev.rit s t bl.
2

to use them only at _ << i . In [9S, the nonl_lqeSr problem has been
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reduced to a succession of linear problems by the analysis of Melsser's

functions into trigonometric series. P.I. Begun [i0] has investigated

the behaviour of a corrugated plate using the linear approximation of

equation (6) and adopting Bubnov-Galerkin's method .

Let us consider the deformation of a highly corrugated thin annular

plate whose deflections may be of the same order of magnitude as its

height. The plate is deformed basically due to the bending of the

corrugation. Therefore, no limits are set to the tilt angles _. In

the calculation it is assumed that the elongation of the meridian arc

compared to unity is insignificant.

Since this is an axisymmetrioal problem, then let us consider the

cross section of the plate (see Fig. I). Using Lagrange Tariables, the

characteristics of the stress-deformation state in the plate will be

determined as functions of %o , where $o is the distance between the

considered point in the undeformed condition and the axis of symmetry.

The distances from the considered point on the plate after the application

of the load, to the _ axis and the axis of symmetry will be denoted by

_(Zo) and_'(_o), respectively. The lower o signs indicate the values of

the functions in the case of a zero load, whereas the upper ones indicate

the values of the functions on the middle surface.

Fig. 2

Fig. (2)illustrates an element of the surface, cut by two meridian

sections as well as two sections simultaneously perpendicular to the non-

seotorial plane and the middle surface in the adjacent points. Let us

denote the radius of curvature of the meridian arc by R, the element of

the meridian arc directed to the external contour by ks the angle between

the tangent to d s and the axis of s_nmetry by (c_), the variation in the angle in
the process of deformation Q_=_o-_) and elongation deformations in the meridian and
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circumferential directions by _ and £_, and the corresponding variations

in the curvature by _ and _. The edges of the shell element are

subjected to normal forces of N 4 and N_ per unit length, as well as to a

shear force of Q and bend/ng moments of _L and M .
1 2

Let us introduce the following dimensionless variables z

2_h _ , P'-- - P R-_-_v (l)
2ll'_ gh ' Eh '

.6, _'____2 r2(,_,)_
• Eh _

The dashes should be omitted everywhere.

Let us consider the conditions of equilibrium of the shell element.

Equating the sum of the forces projections in the direction tangential to

the meridial curve with zero, we get according to (1) (as, for example, in

Ill]) the following,

d(tc_z)ds-_2 s;_- Qz/R_ =0 (2)

The equation of the moments relative to the tangent to the cirola will

have the following form I

c3)"

If the central axisymmetrioal section of the shell is out, and all the

forces acting on it are _rojecte_ on the axis of rotation, then we will

get

_ _o_ + _;,,_ = (_/_)_ _,_ +p/,_ (4)

Moreover, we will confine ourselves with the case _ - oonst. From geo-

metrical considerations it is clear that (see Fig. 2) ,

_,c--_ _J3. _± . _____.. c,._,"_ . __c._
cl_ , d, rise dt. s_c_ o ds
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Further on, the derivatives of all the functions in _o will be denoted by

a dash. According to the definition of R 1 we will have i

! J

R--,- ds ( _. _;) (6)

The circumferential deformation 8_ of any point on the plate will be

_ven by ,

Let us analyse this expression in a series according to the parameter

(see Fig. 2) of the distance from the considered point to the middle

surface'. Noting the small thickness (A 4< I) of the considered plate

we shall confine ourselves in this expansion with the linear part

,) + =)
Therefore, the deformation of the plate will be determined according to

the hypothesis of plane cross sections (see Fig. 2) ,

o ......... t_ ! I
=_ +ae', z */ ; _z'='Z'o-1 ; az--- --

1,2 S,2 . J_1 RIO

C_F"+E_o,o t)

(I + E,') Zo

_I_oCOS_ - "ZCOSO: o )

(7)

Assuming an elastic relationshi¥ for the stresses _,_ and deformations

E_,2, we get :

, _ac,., (8)

The system of equations (2) - (8) defines the stress-deformation state in

a thin-walled elastic shell. This system would be significantly simplified

if it is assumed that _ (< i. This assumption is quite justified, since

the large displacements zn the corrugated plate occur mainly due to bending

and not due to the elongation of the meridian arc. In this case, equations

(2) - (8) can be reduced to a system of five differential equations with
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respect to "_o a_ a_-_ _o_ t =

, slna_

_u i__(m," t_z ) i ,
s,;,_,=o "% (_'- _:, ) ,

; (9)

M r =

/ cos el

_ _'2 _ o

Y t'in af

Here

zo ¢oScY- zcoso_ o p4¢= t
c_:=o-9" '_z z'-_ " z Zoz , Q=rosi,.,o_"

The relationship c_.(_) and c_(_o) are determined according to the

initial form of corrugation. System (9) is solved umder the following

boundary oonditioms t

,(_)-o , ,c,_= I, w(_)= v,(1)=o , ,_(I) = o (lO)

After the solution of the differential equations (9) the variables N

and X are determined in terms of the obtained functions by the aid 2f
2

al gabraic relation

f ! E

System (9) allows, in the case of a very high corrugation, to investigate

the deflections of a plate, of the same order of magnitude as the dimensions

of the corrugation. This is clear from the fact that in comparing the

equations with their solutions no limitations are set on the parameter _ .
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The boundary problem (9) - (i0) can be solved by the successive

comparison and solution of the corresponding Coohe problems. Taking the

value of the argument _.-a as an initial value, we choose three _airs

for the initial values of the functions N4 (a) and Mr(a), under which the

Coche problem is solved, and get three paxrs for the values Z(1) and _ (1).

In the three dimensional s,ace I N_(a), M_(a), Z(1)J , a plane is drawn

through the three obtained points. Then the intersection of this plane

with the _(1) - 1 plane is found according to (i0). Finally, the linear

relationship between N I ( a ) and M_ (m) is determlne_ Similarly, by the

investi tionofthet ree- mens o lspace (4), (1)}we
get a second linear equation relating Ny(a) with M((O). Solving these

two linear algebraic equations simultaneously in three arbitrary pairs of

initial values we get the new combination of N_(_) and M4 (a). By the

repetition of the shown process of determination of the initial values,

it will be possible to solve with a sufficient accuracy system (9) under

the boundary conditions defined by (i0).

The initial form of the corrugation is widely described by an

expression comprising the three free parameters C j m and _ I

(n)

I I

Therefore, the functions _o(Zo)=O.S_+ arots_ o and _o(Zo), could be
determine_ These functions are used in system (9) which was solved on

a digital computer.

The relationships between the functions N4 (_) and M4(e) and the

value of the uniformly distributed pressure q are shown by continuous

lines in Fig_3 and 4)for the following values of the parameters ,

a = 0.6 _ "C= 0.42 ! m= 6 ; n=B _

A= O.Oi ; V =0,5 ; P= 0 .

In Fig. 5, curve 1 characterizes the relationship between the deflection

of the rigid centre W(a) and the pressure _.

Z:
Fig. 3

6 1

\
k

_;I " _ .... _'_

Fig. 4 Fig. 5
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In the case of small loads P and _, the investigated functions are

expanded in series in terms of the small parameter sustaining only the

first term.

;

Equation (9) is then reduced to a linear system of differential equations

M,;.[E'- . cs- (_2)

v.'.-÷;a'- %,f ; ?(a)=.p(,)=o.
............... * i • i

where D denotes (I,V -joot_o), and _- (P +ct'l_)/(P+¢_)

The dotted lines in Figs.(3-4)represent the solution of system (12). In

the "load deflection" plane this solution represents the straight line

tangential to the characteristics of the plate at the origin of coord/nates.

In Fig. (5)the straight line 2 represents the plate under the action of an

evenly distributed pressure, whereas the straight line 3 represents a plate

subjected only to a concentrated load P acting in the centre (using (12)).

In Fig. (6)the profile of a deformed shell is shown for different

values of an evenly distributed pressure 91. The results of the numerical

calculation (9)-(10) show that the shell meridian is mainly deformed due

to bending in the peripheries of its edges. The part of the meridian

adjacent to the external fixed contour suffers a particularly high bending.

The displacement of the highly extended middle part of the meridian with

the increase of pressure _ consists basically in its rotation with respect

to the external end of the meridian.
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I-¸ ....

Fig. 6

In conclusion it is observed that the system of equations (9)-(10)

allows to investigate the behaviour of plates with one or many corrugations

(they don't need to be equal).

It is possible to take into consideration corrugations of different

forms (including circular), enlarged boundary corrugation, angle of fixa-

tion of the external contour ... etc. The number ef cerrugations an_[

their _aramsters are taken into consideration in discussing the initial

form _@ (_o).
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TENSION OF AN ORTHOTROPIC NONLINEAR EL.ASTIC.

PLATE WITH A CIRCULAR HOLE

M_A. Yumasheva

In the available literature, the problem of stress concentration

near a hole was solved either for an anisotropic but linearly elastic

medium, or for a physically nonl_near but isotropio body. The concen-

tration of stresses near the holes of orthotropic elastic plates was

discussedintheboo of Savin[I]andS.a.Lekh itskii[21 The
orthotropic strips with holes, subjected to tension and bending, were

investigated in few works [3,4]. The influence of the nonl_near_ty, of

the relationship between stresses and deformations on stress concentration

near holes was also studied in [11 for isotropic materials. The plastic

distribution of stresses around holes of circular or other forms, was

considered in the book published by V.V. Sokolovskii [5].

Numerous researches (for example, [6,7J) were devoted to the approxi-

mate methods used for the solution of the problem of determination of the

coefficient of stress concentration in the plastic zone of an infinite

isotropic plate with a circular hole existing under tension.

It is highly significant to analyse the ooncentratlon of stresses

and to determine their distribution around a circular hole of an ortho-

tropic plate existing under axial tension, whose material follows the

nonlinear relationships between stresses and deformations, taking into

consideration at the same time its anisotropio and physically nonl_near

properties.

Let us consider an infinite "orthotropio" plate with a circular

hole of a radius _ existing under the conditions of an evenly distributed

axial tension p extending to infinity (see Fig. I). Let us locate the

origin of the coordinates in the centre of the hole and take the major

anisotropy directions of the mechanical properties (it is assumed that

the direction of the tensile force coincides with one of the major axes

of anisotropy) as the direction of the r and y axes.

21 I-
:L .......... J:

Fig. 1
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Assume that the relationship between the deformations 8;_ and

stresses _tm could be expressed in the following form [8]

_'(J): 2,_ , ! 1,!o 6," 2 _,_.f,, ix _ ¢,_ '

(1)

where S_k_m is the tensor of elastic constants; $_m is the tensor of material

constants taking into consideration the anisotropy of nonlinear properties!

b and _ are constants describing the nonlinearity of the material.

For a plane stress state of an orthotropic body, expressed in

functions of stresses, the equations of equilibrium will be automatically

satisfied. From the conditions of compatibility, a nonlinear differential

equation is derived for the stress function • (z,_)

a'_j .a_T 9'_t
. .(z%,.%;) ..- _ :d2 (_.) , (2)

,, a_ _ -axz@,' :2 dz "

,, ; a.,." _ /q" dy'q,,-- -- •
"D

where the following notations were introduced :

(3)

5 = a '3 =o S = a l-IS =a
;fll 7f _ Z_2Z Z2 _ 7_2_ 72 P 7_IZ _0 !

Let us consider in details the case of a weakly anisotropic material.

In this case the perturbation method can be used. According to this

method, the quantities characterizing the deviation of the properties of

an anisotropic medium from the corresponding isotropio material are taken
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as small parameters, and the problems of the isotropic theory of plasticity

(nonlinear elasticity) are obtained in each approximation. However, if

the perturbation method is used, with complex parameters characterizing

the deviation of the anisotropic properties from the corresponding iso-

tropic and linear properties of the material_ we will get the problems of

isotropic linear elasticity in each approximation.

Assuming q_l = 2, we denote

=- _ (4)
a,_ = _.- ' a_2 T

The parameters _I, ... _6 are then introduced in the following relation-

ships

20, _)
7 (7_%) =azz " "E ' a66 E

1=

_---H +_,) , _2z z + % ,

(5)

where

6 a +6z 6 6
Yo rf Z2 rt Z2

ofj Z
, "3"E 2 OC/f -. ----(_ 2 4Ci_fI(_EZ I Z"_[_; T_z

fZ ' 2 2t

there oq ,..., _5 are small parameters characterizing the anisotropy

of the material, and _6 is a small parameter characterizing the non-

linearity of the properties of material.

Using the conditions (4) and (5), equation (2) can be rewritten in

the following form :

I _ (xz d_J r z(1, _) _,_7 ::2-i-y 7 _ .... ,-_- c( *" /oY_'
£ ax _ E _a_2aqz

:': )+,£x: /a-'j
aJ_ )

3x _y z J

_/o( a%r _ aJ, a j 7
a'L a'.F : at*

4 +0(314"{% --.
3xz 3yz JJC _
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_Z _J_ as7 a_/° d21" I _ _I,T a_ a JJ÷ _ --_ + D_ 5 - la_z + ÷a_ _J dx2 d_cz aJc dx d._a_ 2

a_. a'_ a_4 a's ) _c//,77. T ...... +

_ay a_la._2 d._ay d=alj

d], :a_I a jl 'i

..... 4 _ t, d_zax z

ay ,_ya= z ' a _t---_z a_"---_ +oc_ (t, a--_-7_-__ _ +

(6)

aJ, a_7 a_Jf a_ )
+ 2 a d¢ -d el_a _ ,_._ _ ,ay _

+c%(9,a°: di, a_
a:_ it ,;Id_ ,adoS

/ _._ ' ._ 4. "........ ÷

+ ...... + iloc5{i_<#._$<#.it_,7._.,_._dy _ado_ aa__

+_7 _-7--F2+Dxa_, d.<a_
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The solution _(_,9)of the differential equation (6) is a function of the

small parameters introduced in this equation. This function, which can be

denoted 1_y _(z,y,_), can be _Lx_panded in series in terms of powers of_ d .

. s_ _<>q+._%+ o, +z o<+

it 2 i_ Z l 1
,'3"cx +t o_ ._J of ._ t c_ + ;r o," +.;r of

# I 11 l 9 3 ro _ n 5 #_ 6 t 3 t ? #¢. _ 3

(7)

Substituting the series of _ (r,y) in the differential equation (6), and

expanding the terms in powers of _, the coefficients of all the terms

should be equated to zero so that equation (6) is satisfied for all the

values of o_ . This requirement leads to an endless system of biharm_c

equations for the determination of the functions _o, _ ,... The first of

these equations can be written in the following form x

_Jo =o (8)

The differential equations_ obtained after equating the coefficients of
2

_i , _[ and o_ _, to zero, will have the following form :

v_S + _ =o , _ = _,_, ... , (_)

Moreoverl A#" represents ez_)ressioI_B composed of the :i_alqotions _ , _# i... 9

.# and their derivatives! oonsequently_ it represents the already known

solutions of previous differential equations. Although the expressions A_"

are determined without any main diffioultyl yet they are quickly complioa%ed

with the increase of _. It is noted that the function _ will satisfy the

boundary conditions 8

_0 _ =0 at z:a_ I l 8

-_( P:,-<o,_O)6 : _cos_o) , 6_--_

P
-- - s;,r, _8

(lo)
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This necessitates that the function _(j_O) should satisfy the zero

boundary conditions.

The equations of _ are obtained as follows i

d_Jo

v'f, =-2(i., dxzd ," '

_Z = d_q P

(ll)

etc.

Having the expansion (7), it will be possible also to find expressions

for the components of stresses and, consequently, for the deformations

and displacements, in the form of exponential series in terms of _£ .

The solution of equation (8) under the boundary oonditions (I0)

is a function of the stresses 3o [6], and takes the form i

<,:o')' ].7"o= V a _ cos Zg (12)

Taking into consideration that

-- = COS 0
._,; _cosO _ 3x

I 9
-- - -- sins

= sin9 '_ 4 1 cos9 a

and using equation (12), the right hand sides of the equations of _ _ _ and

_6 of system, (ii) are calculated. Therefore, the following nonunlform

differential equations are obtained i
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U

Vl= 3P

3P3£ f 6 _o

_ :- -_ i2_. s_p'-3_z?,_,,@",(-s@_,_z_,?'-
(i3)

where 9 :_"

Solving these equations under zero boundary conditions, the stress

functions _ and _ are derived s

where

" _' (r+ 2; ), ,...,=
1152

-3* 6 !_(,,2 e' ;)._ :--_r',?'-ai)6 5_¢0

Similarly, the function 3_6 is derived.

_oreover, knowing the value of the functions _, 4_ ._2 _nd _ _the right hand sides of the equations of 3, ,_, _._ , , _, , g_ ,

and _ are calculated, and a new value is foun_ for the functions of

stresses and the stresses themselves by solving the equations. The final

equations are not introduced here due to their bulkiness.

Now all the relationships are transformed to the dimensionless form:

: _-T' _'' " _ ' _" _-; ' _
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where_s=_s _=_=_ and _ = the value of the function f at which

considerable nonlinear deformations appear! _ is obtained from

£ (o-_ , _-_ ,-r_o ) (5) _t e = r, e- " _ •"l- _ T-

The expression of the stress _ at ? . l can be rewritten in the
following form ,

,01 2 ,oZvO¢_, _)-

f p _ _ J ! 9

(15)

where _o , _ , _o_ , (_ and _ are functions which can be easily

expressed through _ ._ Using this equation, the variation of the stress _8

along the contour of the hole at _ = &(_-l) was calculated. Moreover,

the material constants introduced in the expression of _O , were experi-

mentally determined for a plastic reinforced by fibre glass, msde on the

basis of polyester resin PN-I with fibre glass T-I as a filler. The

coefficient k = bn/2n-i (I)the Young modulus E, the Poisson's coefficient _,

and the parameter _ were taken as follows I

_'H 2
J¢= 0.035. io (cm7_) , E: t.S'tO_a_;/cd , n =2 ,

W: 0.I_ ,
3

/_ = 0.36 •1o 6 (A,g/_d) .

The results of the calculation are given in Fig. 2-4, where the dotted

lines denote the curves representing the isotropy of material, whereas

the solid lines denote its anisotropy.

Fig. 2 shows the distribution of _'e along the edge of the hole at

_=i and _6 = 0 (elastic solution). The sign (_) denotes the values of the

s_resses obtained by taking into consideration in (15) the terms up to

o_(_=1,2), including the case when c_ = o_ = 0,2. Curve i represents the

zero approximation ( =I = _ = 0).

The calculation _as shown that the difference between the first

approximation (considering the terms up to_ , including the last one)

and the zero one does not exceed 10%, whereas the difference between the

second and first approximation (considering the terms up to oc_ , including

the last one) does not exceed 2.5%.

For comparison, the distribution of _e (curve 2) as calculated by

the following equation
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is shown in Fig. 2.

where

,'.,V: sin'---eE,, (-(_ _')_,:,,'e_o_'e,E, _"s_e_z

is determined by the exact solution of the linearly elastic anisotropio

problem [2_ Curve 2 is calculated for _ = _2 = O. 2 at

' ¢,"-,= E

The deviation of this curve from the exact solution of the second approxi-

mation does not exceed 2.5%.

/

+

t J

0 O.J

_5

3

-I-

o 0

In Fig. 3_4 the distribution of _e at _ = =2 =63 - _ = c_ = 0.2 ,
c_G = O. 756"10 and P = i is given. This distribution varies with the

number of terms taken into consideration in equation (15). Curve 1 corresponds

to the case when the first term of the equation was considered, curve 2 -

when the first, second and third terms were considered, curve 3 - when the

first and fourth terms were considered, whereas curve 4 corresponds to the
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complete utilization of equation(15). As clear from the graph, the nonlinearity

of the material has a more significant influence on the variation of stress

than anisotropy. It should be noted that if the anisotropy of the mechanical

properties of the material was not taken into consideration _=O(_ =1,2,3,4,5),

then the given solution would have coincided with the solution obtained by

Kauderer E6]. The variation of _S with the increase of load (the curves

l, 2, 3 and 4 correspond to loads P- O. 8! l! 1".2! 1.5 for an anisotropic

material) for the same values of the parameters _, is shown in Fig. 4.

As seen from the graphs, the maximum stress o-e decreases as a result

of nonlinearity and anisotro_y of the material! with the increase of the

load, the maximum stress _e will be displaced.
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CROSS BENDING OF CIRCULAR PERFORATED PLATES

V.I. Astaf'ev

Let us consider the case of bending due to a side pressure of

_(x,y), moments of re(S) andh($) and shearing forces of P(s), applied

on the oontour of a thin homogeneous isotropic plate of thiokness

(see Fig. i). The plate is multil_nhed and is limited by a composite

contour of L - Lo + LI + ... + L_. It is assumed that the plate is

linearly elastio and obeys the conventional hypotheses of the theory of

bending of plates. The stress and strain states of the plate can be then

determined by the bending of the middle surface _(z,y) (see, for example,

references [i] and [2] . Thus , we have :

(_

zi .l

.Bz_ 9z_

jg2

M, )-d__ _ -_- 'ay=

3so _

(i)
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where Mx, My and Hx_ are the specifio bending and $orsional moments!

N_ and Ny are the specific shearing forces! D - Eh_/12(l-_ 2) is the

cylindrical stiffness of the platet E and _ are the modulus of elastioity

_/ay 2and Poisson coefficient! _ = _bx + is the Laplace operator.

The equation of bendingt_(z,y) has the following form I

= q/D (2>

In polar coordinates (_,_), expressions (I) and the Laplace operatorA

are written as follows s

olzz -i _ --

,4zJ ,¢ z z a ,.t,
3

a, =-l _. _o ,

(3)

! 8
lit

= Dza _

A J_' _ J_ z_ O_oi

The general solution of equation (2) can be written as the summation

_" = _. + _, where '_o is a certain _artioular solution of equation (2),

whereas _7#is a biharmonic funtlon| the general solution of the biharmonic

equation is given by_A_= 0. According to the method of N.Y. Muskhelishvili[3]
the biharmonic function _ (oc,y ) can be represented in terms of the two functions

_(_) and X_(_) of the complex variable

D
(4)

These functions are analytical in the zone occupied by the plate. Let us

take for _ the function of bending of a unlinked plate subjected to a

side load of _. In polar coordinates, _ oan be written in the form [i] t

)+ --(Co_ +_o+I .Z@,= 6tt D D .,,
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or

where

_zz_ z

o 6#2) D o (6)

Therefore, the general solution of equation (2) acquires the
following form s

(7)

where

The moments and shearing forces can be expressed in terms of _ (_)
and,_(Z) as follows ,

Mx.,.M_- _, M_,,-,o,.(,,,,.,,')(',e'('-,) ,,-,e'(--_j)-

_Ci, i)

_ ° ,

_P lr ':

: _ ('- d{_ _'"¢_) ÷x"(,)) ÷ z
8

(8)

In [2] it is shown that in the general case of a definite multilin_ed

zone, oooupied by the plate, the funotions _(2) and X_ (Z) oan be
represented in the following form I

P:O m p p

_,O):r (%,_,%)e,,{z-zp),;z (_)

(_)
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where Ap and _p are substantial constants, _Zp is a complex constant,

_.(_) and 2_(Z)are regular functions in the zone occupied by the plate,

and Zp is the internal point of the Lp (p- O, I, ..., k-l) contour.

If Lp (P- 0,i,..., k-l) represents circles, then according to [4],

the functions _, (5) and 2_ (_), which are regular outside these circular

holes, can be written in the form of Appel's representation :

where

,,=o ,,_, (Z- ;_p)'_

p=l, ._, (_- _p)"

_p is the centre of the Lp( = O,l,o..,k-l) circle°

The boundary conditions on the external corner Lk will be :

(lo)

=0 , _--/ =0 on ks (n)

in the case of a firmly supported external contour, or ;

w= 0 , M n = 0 on k_ (12)

in the case of a freely supported external contour, where n ie the

external line normal to the L_ contour°

If on the composite Lr . Lo + L_ + .o. + ___ contour the force flux

p($) as well as the moments re(S) are given (the first basic problem of the

theory of bending of plates), then the following boundary problem will be

obtained for the analytical functions _ (Z) and X(Z) ,

on L'
(13)

=9+_
where X +r_

constant and

! Ce is the substantial constant; C_ is the complex

9 is the angle between the line normal to the L' contour

z_CI-_) o '

$ $

@

_.(_)---_

('14)
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/o (_)---/_

$

0

(14)

and the axis z. The boundary condition (13) can be represented in the

following more convenient form E4_ :

(15)

where

• a I

/,',,/,. z_¢,._[(,,,-d)-r,,,o-;L )]

In the case of the second basic problem (on the L' contour the

deflections and tilt angles, i.e_. the d_/dn ratio , are given), the

boundary conditions can be written in accordance to (13) or (15) at

Let US consider in details the bending of a circular plate of a

radius _, perforated w_thK uniformly distributed circular holes of radius _ ,

whose centres lie on a circle of a radius b at the points (see Fig. 2)

zp= be,_p C2p_/^) , Cp = o , i , .... , K-_ ) ,
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i.e. L K is a circle of a radius a, whose centre lies in the origin of the

coordinates (L' - L o ÷ L_ + ,.. + L__i) , and Lp is a circle of a radius R ,

whose centre lies in 2p(P = O,l,...,k-l). Let us introduce the following

two systems of coordinates, (_, _ )_ which is related to the plate centre,

and(_,_), which is related to the hole centre Lo.z - b * _ - b + _ e ts .

It will be considered that the contours of the holes are free from external

load_ on L'_ i.e. m(5) - p(5) - O° If q has the property of cyclic

symmetry, i.e. it is equal and invarient in the case of rotation of the

system of coordinates (%, _) by an angle multiple of 2_/K, then the _efleo-

tion _, the bending moments M=, M_ and H_ , and the shearing forces N_ and

N_ , will have the proper_y of cyclic symmetry. From the condition of

cyclic symmetry it follows that _o (_) and _.(1) will have the following

form =

whereas the coefficients A , _p, a , E d and F d(p- 0,I,... k-l) in theP P

expressions of _ (Z) and _(FJ will have the form ,

Ao=A : ...- A
f

A

K-f -- _ # f " " • K-! o

%= hem ; [d = _'n e
.,I , Fa :r e" t
p ' n p

(17)

where

e . e p(zpi /,) •P 1 p= O,l,..., k-I

From (16) and (17), the expressions of _(_) andS(Z) can be re-

written as

2 c z ,Z
n: O m, #_ 0

E n e_ /
"S

,S z
n'= O p,#

0o ,Cn e n j
÷_ _'

(18)



-60-

Then, the deflection _ can be written in the following form s

9zz_ z 2_ ./ ,..,*
+-- +e+o+ (C°z_+ + D )z +6+ .P D ,o

k-I

+,_ (CA+++,.+,,_++8+ , +o,)t,,(++- ,,), (19)
p;O P P

e _ +,'"
+ _ £" ," " (t.-,,,)" +

n_l i

For a freely supported plate, the boundary conditions (12) take the form :

_:0 a+ z + -- -- :0 at I=_' _ a, (20)

To fulfill the boundary conditions (20), _ is expanded in series in terms

of 2, and the real part of these series is taken

W= 9,'+__...+.+-- z +"2 + k A z Zf n z + k o: [n t
6+19 2 o

cO

(C "*-++b + z ,', D ), ,los,.,++ + (m)
n#_ n

oo .k

,+._-,(_,..,'. _,,.).(P) ++o,,,,+] .. (, >+)

where

- ._-,/,,+-2) ZM 8 +*- l_,,- kX £ b i,.,+,.I - ",..7 r. n I & ,+k-1 /

¢
m nk+l '

('m) ,,; C,_ - binomial coefficients.

Craus [5], solving the problem by an another method (by constructing a

biharmonic function having the property of cyclic symmetry with the aid

of Hawland's representation [6J), he was able to derive a similar expression

for _. However, an erroneous solution was derived when the obtained

expression was expanded in terms of Z. In the expression of P_n and _n
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the corresponding terms (A + _B ) and l__(_ + Bb are absent.
b n nk+l

Substituting (21) in the boundary conditions (20), the coefficients Co,

D , C and D (n>/1) can be expressed in terms of A, B,o_, E n and F_(n>/1),
O n n

f /-# .z
I 3+_ a2_kA_na I 3"_ kA.,-_ koro

1 5"_ ', I 3+_ :,
o *--_ kAa ÷ EBb -

'D°=fz8 1,_ Z _,'_

f I-'_

2. 1÷_

Cn _C, P ..1_ i)(___)nk

/

= I_ + CZn PZn " 0 _'---_ ;

nk

D°:(_j P _c P2° .',
f n _n (2

(22)

where

C,,d)(nk-1) _,-d).,,k .2
C = ; CZn =- cZ

In 2nk , _+ ! 2nk ,'_+[

(3. _) ,,k z [t+ _)(,,k.r)
C =- G , C =-

According to the propert_ of cyclic symmetry, the curved problem (15)

for _ (_) andX(Z) will have the same form on each of the Lp, P = 0,1,...,_-l.

conto,,r_ . Therefore, this problem can be considered only on the Lo

contour. Writing the expressions (18) in the system of (y, 8 ) coordinates

(where Z =b+_ ), and expanding them in series in powers of _ , the following

results are obtained for A_ B, En, c< and Yn z
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• _(M E ._ : ).O( = _"_e On n on n t
nrr

(24)

m 1 ,,1 n rnn

Where

- 16 1-_)

(m= f,2,... )

-2___,-:.-_-,Ic,,(A, _ "

tqo,= 2 I*I =:_ kb..-1 _I-I _ ,_°A , E C
n'_l |,f f$

("'_')(_)"_o-,I:/",;

,., o,.,_ Z t _Z (/4sk
.,_,-k{_) zT_ ,-T

(25)

(26)

. tn A •

,'Fin /_# I n*, _ Or,

,,.t_o .$1_-t.t}

+ kb s_,R,S_{n.,]/:

,,,,, _ rn, An-_? _[ , kb'"'_ R
Fm O t) $r f _._rrt rl - _ )

(2?)



- 63 -

I _sm A ;

---,¢__)"_R,,o= ,( )b ,.)[;...,)_' ., ')

.+ C61i -_k m ,

l"9 _ #in-# _iI Oe 3 z'n*z L
"l'---.-----.--_ _ ÷A IllA "#

+%.,_+Z 7- _.,, -fV_-f/ R ebb- ;
l=f iSm lk+l

,it _-b/ m-f li _e:_2_"z{
-_ _ ,------_/nmA +

mn l#In ri't rn.l,_ mfmcl) ( n,St

co sk.2 )_ ,
,¢. M -kz,""z R _(°., _On S, I 3Sin

N. =-&J m.1 _:3 + IV
mn "; ,'n m-I,,, r,i (m + l) ,_m oa

., _o ¢ik.l ) ]-kb _ R ,,.: lj
g"l _Srn

(28)

Qzm =s i S gl, sm ;

2_k

'_,,_'_"7-_) _,,o+_)_'_)..
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Nor /3,

t_,m( rn _ n- ; I ep"A =(-I) ,r
o _ p,, (6-_p) '_''

,,_ (.I !

m p:1 [b- ,z,o) '_

t_° .... _ .... ;.
p:1 (b- _p)

nm >I

For the determination of E_ and Fn, an infinite system of equations with

an infinite number of unknowns (25) was derived_ It is possible to show

that this system will be quasi-regular for any zome between the holes. Tn

fact, we can consider, without violating the generality, that the radius

of the holes is _ = i. Then, Ib - _pl_ 2 for p = 1,2,...,k-1, b_ i and

b + i <a. To ensure the quasi-regularity of the system it is necessary

that the sum of the n modulii of the coefficients with the unknowns E n and

Fn should be limited for each value of m (beginning with a certain number

for m) and should be less than unity E7J.

But

I ° l?
n= _ I n_l . n*f f

n=! :#

" Jf lj+ k"E 1/_ b-_( 'k-' •
$:f 2 Crn =r W. n- ; $

"I I "'° ' _ z_, ,J_'°_o.,'._'{M.,oI-"_z _ ,-- E I,_.,ol'q_.;) o,,
n,= f n-" ; r_r_ /T_ n: # ,

o0

= _=! ]¢_,_.,/n, ! n-; ]J ,

(29)
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,k= I_ I_: b°(_'o.,
$:f n,l

Since

=o _ k-1 !

I A]_ z t'l ,),,,, -.. o
n,,l p:l b- Zp I- rn.,_

I I _ ' _ I-_°
p=7 ]_- z p s,r _ ,_-oo

lb-z1,]-I _'I ; p_ 1,2 .... ,It-f ;

blb.O b
<I ; - (I ,

az ¢z

and ._,1_o.I ..d _,1_0. I are limited quantities,then±t is el.at tha_
each of the four sums is limited for any value of rn and tends to zero when no

intends to infinity, which proves the quasl-regularity of system (25).

Therefore, system (25) can be solved by the method of reductions _7J and

It is possible to find out a solution for very close hole boundaries at amy

degree of accuracy. For three holes, system (25) becomes quite regular

for _/b less tha_ the numbers (for b/_-0.3, _/b < 0.16! for b/G = 0.4,

_/b < 0.21_ for b/o. - 0.5, A/b/_ 0.23), i.e. it can be solved by the method

of successive approximations E73.

After the determination of the unknown coefficients E n and Fn in

equations (22)-(24) from system (25), C@, Do, Cn, Dn, A, B,_ and, conse-

quently, the unknown functions _ (Z) and X(i_), are _erived_
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The distribution of the moment M e on the contour of the hole L.

is of great significance. Since Mp - 0 on L' according to the boundary

conditions (15), then we can write the following expression for M e on the

contour L o

._o ._o _o (30)
at • : b +_

where _ = .Ae ;'e and J_o

For a freely supported plate,

is the maximum moment in the rigid plate.

..#o. qO÷_) a.
'16

Calculations were conducted for the following cases: i) b/a = 0.3,

n = 1/2, l, 2 and 41 2) b/a - 0.5, n - 1/2, l, 2 and 4, where _ is the

distance between the holes, expressed in units of the hole diameter (see

Figs. 3 and 4). With the increase of the distance between the holes, 4/_0

tends to a constant value _-2 _ _+#f___ . Wlth the adherence of

the holes, the maximum value /_//_0 moves from the point e - _ to the

point 9 = _Jr/3 , l.e'. the maximum twisting moment on the hole contour is

located at the point of minimum distance between the holes.

_o
I

_1_ *#

_L
fl

-I1._

--rl' !

-rl :!/2

L__ I

1

Fig. 3 Fig. 4

Comparing the results of calculation with Kraus's results [5.] it can

be noted that for large distances between the holes (or small values of 2/b)

the divergence will be very small, since for small values of A/b the terms

not considered by Kraus lead to an insignificant error, whereas in the case

of adherence of holes (increase of _/b) the effect of the unconsidered

terms becomes significant and the divergence in the results will be signi-

ficant. Therefore, for n _ 1/2 and l, the values of _/_@ obtained by

Kraus are 10-15% lower.
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INVESTIGATION OF THE STRESSES IN A PERFORATED DISC

SUBJECTED TO CROSS BENDING, USING AN OPTICAL METHOD

L.S. 22enko, A.M. Lokoshchenko and V.P. Netrebko

Strictly speaking, the calculation of a perforated construction is

based on the solution of extremely complicated boundary problems for multi-

linked zones. In this case, the issue of concentration of stresses near

the holes and, particularly, the mutual effect of these holes on each other,

acquires a considerable significance. In the literature, there are some

solutions of similar problems under very specific conditions. There are

yet no solutions for plates with large numbers of circular holes of different

radii and depths. The only reliable method for the investigation of such

types of constructions is the optical method of determination of stresses.

Fig. 1

A description is given below for the results of investigation of a

natural disc with a concrete system of holes by this method (see Fig. i,

where the dimensions are given in ram). The disc has three types of holes of

13.5,nn_ depth (measured from the upper surface): through-holes, @ _ 22.5mm

(I) ! opened -holes, _ - 12.5 mm (II), and blind-holes! @ _ 8.5 mm(llI).
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The behaviour of such a disc, which is subjected to a uniformly distributed

side pressure and which is hinge-supported along its contour is considered

in the elastic zone. For the determination of the stress state in the

natural disc, a disc of similar dimensions was constructed. The model-disc

had the same system of holes and was made of the optically sensitive poly-

meric material ED6-M.

The method of "1_reezing ''of deformations was used. This method is

based on the character of some optically sensitive polymeric materials.

According to this property, the deformations arising in the models of these

materials due to their loading under the conditions of elevated temperatures

are fixed (frozen) by coaling (under load) to the room temperature. Besides

the deformations, the pattern of interference strips, related to these

deformations, is "frozen". After "freezing", the necessary number of

plates is cut from the model and the stress state in the investigated

point is measured. The plates (sections) are investigated in the same way

as in the solution of plane problems.

The sequence of "freezing" of deformations for the utilized ED6-M

material was as followss heating, in the course of 3-3.5 hours, up to the

"freezing" temperature (of the order of 130- 135°C), preserving it at that

temperature for about 3 hours, cooling down to the room temperature with a

rate of 5_lO°C/hr.

The deformations in the model of the disc with holes, which was

subjected to a side load, were "frozen" in a thermostat of the type VTS-I.

The rate of heating was controlled by the intensity of the current fed to

the heaters. The heat in the operation chamber whose dimensions were

500xT00xTO0 ram, was controlled by means of four thermometers, mounted at

different locations in the chamber. The temperature control was provided

by a contact thermometer.

For the observation and photographing of the patterns of interference

strips and iscclinals in the sections, a polarization BPU set (of the type

IMASh-OMB-2) and a coordinate synchronization polarimeter of the type KSP-5

were used.

The optical properties of the model material at the "freezing" tempe-

rature were determined by testing the calibration of a circular disc on

its diametrical compression by two concentrated forces. The measurements

were conducted by the use of a violet filter which extracted from the

mercury spectrum a wave length of _ - 4358 _. The calibration showed

that the optical constant of the material is _o - 0.408 kg/cm.

According to the data of the method of optical polarization, the

differences in the quasi-principal stresses (_.e. the difference between

the maximum and minimum stresses acting in the plane of cut) in the plates

cut from the spatial model after "freezing" of deformations, as well as

their angles of inclination, can be determined. For the entire determination
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of the components of stresses in an arbitrary point of the spatial model,

it is necessary to conduct some optical measurements in the plates, cut

in three mutually perpendicular directions. It is also necessary to

integrate the equations of equilibrium of the spatial theory of elasticity Ill.

In the general case it is necessary to have three equally loaded similar

models.

Let us consider the investigated model of the disc, perforated by

a system of holes, as a spatial cylindrical body. For the full investi-

gation of the stress state in an arbitrary point inside the disc it is

necessary to have three sections passing through the given point and

coinciding with the coordinate planes _00, _0_ and 20e. Since in cross

bending of the disc the stress state in its plane is the major determinant

factor, then it will be possible for finding out the dangerous zones to

confirm ourselves to the investigation of sections parallel to the neutral

plane of the disc.

The determination of the stresses on the free contours of the model

is highly simplified. For example, if in the plane of the section parallel

to the _O9 plane, there is a circular contour free from stresses, then on

this contour _@ = 0 and _ _ O, whereas

= (1)

where h is the thickness of the model and _ is the order of inter-

ference strips. The value of the circumferential normal stress _b was

taken as a quantitative measure of the stress concentration on the contours

of the holes.

Following such a method, the features of stress concentration near

the holes of the considered disc could be studied. The model disc was

supported along its contour. Using a heat-resistant paper, the model was

evenly (including the area of the hole), loaded by a weight of P _ 4 kgf,

and then it was located in a thermostat of the type VTS-1. In the thermo-

stat the disc was heated to 130°C and was kept at this temperature for

3 hours. Then it was cooled to the room temperature and unloaded. After-

wards, two specimens (A and B) (see Fig. i) were cut from the disc.

Specimen A included a part of the disc perifery, and specimen B was

located in the middle part of the disc (the side edge of B passes through

the disc centre). It could be considered that the investigation of the

specimens A and B gives us a pattern of the stress state in the whole disc.

The specimens have three large opene_ holes of the type I, as well as a

large number of holes of the types IX and III. Four plates were cut from

both specimens, parallel to the neutral plane of the disc. Each of these

plates had a thickness of ] w 4 ram. The upper plates were denoted by the
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subscript i (A4 and B_ ) and the lower ones by the subscript 4 (A_ and B_).

The blind holes intersected the first three plates. All the eight thin

plates were investigated on the polarization BPU set. The obtained

results have shown that the difference of the quasi-principal stresses

attains a maximum on the contours of the holes. Therefore, it is possible

to confine ourselves to the determination of the stresses along the contours

of the holes. The polar distribution of the dimensionless circumferential

_e =_0 h/_o stresses along the contours of some holes is shown in Fig. 2-4.

It is clear that according to (1), the magnitude of _e coincides with

the order m of the interference strip in the considered point.

Specimen 4 has three op_ned holes (I) and a large number of blind

holes (III). The experiments have shown that the stresses in the two

intermediate plates (A2 and A3) , near the neutral plane, are very small,

i.e. the periferal par_ of the 4/so exists under the condition of almost

pure bending. Therefore, the primary interest in specimen A consists in

the investigation of the stress state along the contour of the hole in

the first and fourth layers.

The analysis of the experiments has shown that the mutual effect of

the small holes (III) on each other is insignificant. The distribution of

the _ stresses along the contours of large holes in A have a cyclic

symmetry with a maximum of_ i. 5 (in the direction of the neighbouring

small hole) and a minimum of _. 0.8 (in the intermediate direction between

two neighbouring small holes). The similar distributions in A4 vary insig-
nificantly, since the blind holes (Ill) do not reach the lower plate A .

The highest _e stress in the whole specimen A is observed in the contour

of the holes III( _emax "_ 3), and in the points located along the

direction of the hole I.

The distribution of the _e stress along the contours of the inter-

mediate hole I (see Fig. I) and the holes Ill adjacent to it, is, for

example, shown in Fig. 2. For convenience, the distribution of _% stress

along the contour Ill is excluded from the drawing. In Fig. 2-4 the

direction towards the centre of the disc is indicated by an arrow, and

the dotted circles indicate the scale.

Fig. 2

C
/

/
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Specimen B contains three large opened holes (I) and a large

number of holes of the types II and III. The analysis of the photographs

of the interference strips has shown that the two upper layers of

specimen B (Bi and B2 ) have insignificant stresses. This can be

explained by _he following : Specimen B is located in the central part

of the model. In this part the state of pure bending is superimposed

on the all-sides tension, provided that the disc is subjected to a side

load. Therefore, the two lower layers of specimen B (B3 and B_) are more
loaded than the upper ones. Moreover, the highest stresses will arise in

B_. Apart from those of the three holes (I), the maximum stresses will

arise on the contours of the upper and intermediate holes (see Fig. 1),

which are located very near to the disc centre. The distribution of _e

in B along the contour of the intermediate hole I is shown in Fig. 3,

whereas Its distribution along the contour of the lower hole _ is shown

in Fig. 4. As in specimen A, the mutual stress concentration near the

holes of the types II and Ill is insignificant. In the neighbourhood

of the intermediate hole (I) of the large radius there are 4 holes of

the type II, which lead to maximum _8 stresses. Along the contours of

the I and II holes (see Fig. 3) the stress amounts to 3.5--4.5 in the

mutual direction, whereas in the rest part it amounts to 2---2. 5. The

variation of the stress along the contour of the lower hole (I) of the

large radius (see Fig. 4) is insignificant (_ 1), since there are no

holes in its vicinity.

t / f.-- _", "

t tt,<,
\\ .... .... -...i.I

Fig. ]
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Fig.4

2 ..............

l --4... J JOo
T s

Fig. 5



- ?3 -

The distribution of stresses in B 3 is similar to those in B_.

But the stresses along all the corresponding holes are approximat@ly

2 times less. Fig. 5 shows the scanning of the distribution of the _e

stress along the contours of the intermediate hole I (solid lines) and

the neighbouring hole II (dotted lines). From the analysis of the

photographs of the interference strips it is possible to conclude that

the maximum stress concentrations in the disc take place in these locations.

From the analysis of the interference patterns in the whole perfo-

rated disc it follows that the highest (circumferential) pressures are,

according to (I), equal to ,

G,ema.x _rn O._OS X _.5 A"_ _

Stresses arise in the solid circular disc of a radius a, which is hinge

supported along its contour and subjected to an evenly distributed

pressure _, with their maximum lying in its centre L2J :

where JJ=0.5 is Poisson's coefficient of the utilized material.

Therefore, the maximum pressures in the disc are highly increased

and displaced from the centre to the contours of the holes as a conse-

quence of perforation.

After the determination of the pressures in the model it is necessary

to solve the problem of transformation of the results of measurements

from the model to the natural construction. The conditions of transfor-

mation can be obtained from the laws of similitude. These laws express

the relationship between the basic quantities determining the flow of the

processes in the model and the parent constructions.

To simulate the stress-strain states of the model and parent

construction it is quite necessary to satisfy the following requirements=

a) the model should be geometrically similar to the parent construc-

tion!

b) the investigated processes and conditions of the parent construc-

tion and model should be described by the same equations!

c) the initial and boundary conditions for the parent and model

should coincide!

d) the dimensionless parameters of the same notation, incoming in

the differential equations, boundary and initial conditions in the model

and parent construction, should be correspondingly equal.
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The conditions of geometric similitude are determined by the ratio

= _p/_ of the characteristic dimensions of the parent construction (Ep)

to the dimensions of the model (e_), i.e. the scale of linear dimensions A.

In the case of a strict geometric similitude, the scale of variation of

the linear dimensions A_ =Aep/A_m should be also equal to A , i.e.

the amount of strain in the model and parent construction should be equal.

However, in the method of optical polarization, the conditions of strict

geometric similitude are never fulfilled, since the strains in the model

usually exceed those in the parent construction. It is just required that

the proportionality of the strain in the corresponding points in both the

model and parent construction should be fulfilled.

The entirely closed system of equations for the determination of

the stress-strain state of the body under static isothermal deformation,

includes the differential equations of equilibrium boundary conditions,

equations of state and equations of compatibility. The system of differen-

tial equations of equilibrium, in the case of the given processes, is

valid for bodies of different materials. Consequently, this system will

have the same form for both the model and the parent discs. The limiting

conditions will coincide if the loads, applied to the model, are similar

and proportional to the loads applied to the parent disc in the corres-

ponding points. The equations of the state of the materials of the model

and parent discs are determined in our case by Hook's law.

On the bending of elastic plates, the stress in the mean plane in

the case of fulfilment of Kirchhoff_ conditions can be presented in the

following form :

where _ is an arbitrary dimension in the mean plane and h is the

thickness. If the model is geometrically simulated to the parent disc, and

assuming that _p, we get :

general, Poisson's coefficients for the model and parent materials are

different. Moreover, in the method of optical polarization it is necessa_

to work with increased (as compared with the parent disc) strains. This

leads to some unavoi_ble errors _ the determination of the stresses in

the parent disc, since they depend on the properties of model _terials.

The sources of errors can be determined either e_erimen_lly (by the

investi_tion of mo_ls with materi_s having different values of Poisson's
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coefficient) or by calculation (by the solution of analytical problems).

Therefore, for the estimation of the effect of Poisson's coefficients in

the problem under consideration, we should study the bending of a c_rc_lar

rigid plate, which is hinge-supported along its contour and which is

subjected to a uniform pressure. The stress in the centre of the disc

is slightly dependant on _ :

If it is assumed that the Poisson's coefficient of the parent disc is

Up = 0.3, whereas _m = 0.5, then the error in the stresses will be

within 6%. All the data obtained by the determination of stresses in the

model-disc can be applied to a natural metallic disc almost with the same

accuracy indicated above.
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AN APPROXIMATE METHOD FOR THE ESTIMATION OF

THE DYNAMIC TEMPERATURE FIELDS

S.A. Shesterikov and M.A. Yumasheva

In few practically important conditions of operation of elements of

construction under elevated temperatures, cases are encountered when some

of these elements undergo quick and intensive heating. In such cases,

the estimation of the strength, temperature distorsions and other effects

converge around the necessity of determination of the arising dynamic

temperature fields. Naturally, this temporary distribution of temperatures

in the rigid body should be determined with an accuracy not exceeding that

of the input data . Moreover, this distribution should be expressed in a

form convenient for further utilization (for example, for the determination

of the fields of stresses in the infinite problem of thermoeL_stlcity or

thermoplasticity). A version of the method of calculation of the dynamic

temperature fields is suggested below for a class of such problems.
• J -

L

Fig. i

Let us consider a body (see Fig. I) of a volume V, limited by a

surface S. The point P on the surface S is determined by a system of

orthogonal curvi linear coordinates _ and _! the coordinate _ is directed

towards the normal inside the body, It may be assumed that before a

certain period of time (which is taken as a reference) there was an even

temperature field in the body. It may be assumed also that beginning

from this moment a temperature field is created on the surface of the

body, which is dependent on time according to the following rmlationships

r=%(p.t) (i')

Then, for the determination of the temperature field in the body as a

function of the coordinates and time it is necessary to solve the following
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equation s

(2)
_t

where _ is the coefficient of thermal conductivity. The analysis of

the known exact solution of equation (2) under the boundary conditions (1)

shows that although, theoretically, the temperature in any point of the

body varies instantaneously with the temperature on the surface, then, in

reality, some gradual change will take place in the temperature of the

body beginning from the surface. This change attains real values inside

the body only after a definite period of time varying with the value of

the coordinates_f. Therefore, it is natural to introduce a surface

parameter L, which will be considered as a border separating the heated

part of the body from the part where the temperature up to the moment of

approach of the front can be practically considered constant. Consequently,

the conditions on L will take the following form :

The solution of equation (2) under the conditions (i) and (3) can take

the following form s

= v',; , (4)

where _ is some selected basic functions, dependent on unknown para-

meters (the method of their selection is indicated below). Such an

approach is identical to the methods elaborated in similar problems by

several authors El, 2_. The functions A i are selected from the boundary

conditions. Let us consider the particular case of selection of equation

(4). If we search for a simple expression of the type (4) it is necessary,

in accordance with the three boundary conditions, to assume that the value

of the three terms in series (4), is minimum. Then, we will have s

T = Ao ÷ Ay q_I + A2 (p_

In this case it is always possible to consider that

from the conditions (i) and (]) we will have s

(5)

_.(0) - O. Therefore,
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where

or

T = _ (p, t) _ (e, _)

Let us change the variables by introducing the time t with respect to

the reference tv, according to the following relationship :

t= (_'1_)_ (7)

where _ is some characteristic dimension. All the coordinates

(u,_,_) will be considered dimensionless with respect to the same A .

Then, equation (2) can be written in the following dimensionless form :

a u L_ dT 1a rL:,_,<,<_r)+ (._ +
aT

a (.L. L_ a_ )= La L L --+a--_ -t_. a_.,. ,, ,¢ at

(8)

where Lame's coefficients are determined from the following relationships:

l a_, z a#. l,...('=_)'.(_ ) .('_) (,<=,,.,,. _)

The yet unknown value of the depth of the heated layer _ can be deter-

mined from the condition of the integral satisfaction of equation (8) in

the heated zone

sl _,( <o o, x-m o,J
i t

+_-;_--Z _]e. e,<a,, :
(9)
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Let us assume that the heating process is, in some sense, almost regular.

Then, in this case, the first two terms in the left hand side of the

equation will be much less than the third term. As a result, we will

have =

]Is . ._ ( Lu _,9L, gv. av..aT dw- dud1.,= LuL,, Lu,.._t d_ dud_
(lO)

Integrating the left part of the equation with respect to _ , taking

into consideration the boundary condition (3), and substitutingT by its

value in (6), we get from (lO) =

a_ {L,,L,zL dur dud_z 0

In the case when Lu, L.p and Cw are independent of a ands, the function

7" can be represented in the form of a multiplication =

W, _O(_)V'{p) , (12)

Equation (ii) can be represented in the form :

!

lO=O o

where

The second integral is a definite expression that is considered different

from zero. Therefore, in the fulfillment of condition (12) the following

equation is obtained =

t

_= 0 o 2_
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Let us consider in details condition (12). In fact, this condition does

not put rigid limitations on the temperature field _ or on the boundary

S. In most problems, the temperature _ can be represented with any given

degree of accuracy by the following relationship z

(15)

Due to the linearity of the problem of heat conductivity, it is now

possible to find out a solution for one component and then to determine

the general distribution of temperature as a sum of separate solutions.

Let us return to the analysis of equation (14), and use the exponential

functions as basic functions for _OI and _2' In the simplest case we
can assume I

Then, from (6) it is easy to get :

where

n_

The preservation of the arbitrary values of the indices od and n2 in

expressions (16) is justified by the fact that in the future it will be

possible to improve the solution by the corresponding selection of these

parameters, using, for example, the principle of least square deviation

of the solution from the exact one_ with respect to volume and the charac-

teristic time. For example, we have

where

(18)
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In this case the characteristic time U is selected from the condition

that the whole considered time interval t was taken.

It is clear that the method can be also generalized when a large

number of basic functions and unknown parameters is introduced. However,

due to the sharp increase of the volume of investigation such a method

begins to loose its advantage before the exact solution of the problem

of heat conductivity in series and in numbers.

Let us consider the application of the mentioned method to the

calculation of a concrete element. We may select, as an example, the

temperature field in a oyllnder whose surface temperature _ is given.

As an approximating system of the functions _ , and _ let us take z

Then, from (17) we have ,

Substituting (20) in (14), we get ,

e

-T
Let us introduce the cylindrical system of coordinates with the • axis

coinciding with the cylinder axis. Then, if the radius of the cylinder

is denoted by R, and R is taken as the characteristic dimension _ , we

will have 8

, ,

From which we get :

Substituting this expression in (ZI), we get :

t _ Z]du _
¢ o

Let us consider the steady state when

can be rewritten in the form s

_ cons t,,

!

7 )'7' o
@

(22)

Then, equation (22)

(23)
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and it is easy to get an equation of the form :

T ' (24)

Integrating the last expression we get an equation relatiu_ _ with t

Y2t = e_- _e' (25)
3

For the dynamic external field, when O depends on t, the equation

becomes more complex. But for definite laws of the relationship % (%),

this equation can be integrated in a closed form. For the considered

case, the equation of r, t and_ can be obtained in a parametric form s

_ )' aL ZJ<

"/-_- 0 at _>E
(26)

where _ and _ are related by equation (25). The obtained relationships

are valid for that moment when _ becomes equal to I. From (25), we get

the value of t, for which _ = 1. Further on, the temperature field will

vary in the whole cylinder, and instead of the boundary conditions (3) we

will have the following condition J

_T I = O

Assuming once more that the temperature field has a parabolic relationship

with _, we will get for _ the following expression :

T= o. (_-w) _ + e - a (27)

In deriving the last expression the indicated condition, as well as

condition (1), were used. The parameter _ (t) can be determined from the

condition of integral satisfaction of the equatiom of thermal conductivity

(either type (lO) or (ll)),i.e.

(28)

Using the condition t = to a,,@ , we get s

_z = ee -s'ft-t°) (29)
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11

__-4r

Fig. 2

Equations (24), ('25) and (27), (29)represent completely the relationship

between temperature and time, as well as the coordinate_. The comparison

of these relationships with the exact solution [3J is represented in Fig. 2.

In this figure, the solid lines represent the curves obtained from the

exact solution, whereas the dotted lines represent the curves obtained

according to the suggested method (the values of the d/mensionless time

are marked near the corresponding curves).
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RELAXATION AND CREEP STRENGTH OF PIPES SUBJECTED

TO COMPLEX STRESS STATES

By
S.A. Shesterikov, V.D. Kurov, G.P. Mel'nikov,

E.A.N.yakotin and M.A. Yumasheva

The operation of several elements of electric equipment Ill can be

characterized by the combined processes of creep and relaxation flowing

in different basic directions. One of the most characteristic forms of

such a strain is the condition of tubular elements subjected to the simul-

taneous action of the internal pressure and the given axial deformation.

It is clear that such a form of a complex stress state can be very easily

realized in experiments. Let us consider some features of th_s case, and

investigate the process of stress relaxation in a tube subjected to the

combined action Of an internal pressure q and a given axial deformation _.

In the specimen, the following system of strQsses will emerge :

% = __e°- . =o , 6", . (i)

where _ is the tube radius, and h is the thickness. The axial stress

_ can be represented as the sum of two components

= % + % (2)

where _24 is the stress caused by the pressure _, whereas _-_ is

the stress arising as a result of the additional axial tension _. The

deformation E2o can be simulated as a thermoexpansion or constrained

deformation of tubes in a paket. It is evident that s

= 6"e/2 (3)

The superposition of the two processes - creep in the circumferential

direction and relaxation in the axial direction (the stress in the radial

direction will be neglected, and it will be considered that 6_2 _ 0),

will lead to a quasi-plane stress state. For the discussion of such a

stress-strain state it is necessary to select thoroughly (physically

uncontradictory) the equations of the theory of creep, describing the

processes of creep under multi-axial stress conditions. As a basis,

let us take the equation of the flow theory [2] for a steady creep z

_.#. = / ._. (4)
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where P/. are the components of the tensor of creep deformations,

Sj_ are_4the components of the deviator of stresses, and f is the
function of the invarlants of the stresses tensor. It is assumed here

that the creep strain satisfies the condition of incompressibility. For

decreasing the transformations it could be assumed that the function S

depends only on the second invariant of the stresses tensor (although

it can be shown that all the data given below are valid on the selection

of an another relationship for f and the use of other invariants).

Therefore, the axial component of deformation in the considered case can

be expressed in the following form z

In equation (5), _O is a constant parameter. Therefore in the case when

we get from (5) an expression for6"_

(6)

Initially, _g(O) -
Let us compare the relaxation curves described by equation (6), for the following

two casess a) on the existence of a pressure 9' b) when _ = O. Moreover,

assume that the initial stress _ is the same in both cases. The equation

of @z will then take the following forms s

(7)

Since _o > _/2 , then divide the whole zone of variation of _g.
to three sections s

% > > '

-9 >% •
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and consider that _f(x)/BZ>O (i.e. the function I is steadily

increasing). Then, it will be clear that in the first zone the right

hand side of equation (6), for the case when _ is absent (further on we will

call this case "cz"), is greater by its absolute value than for the case

when _ :I= 0 (this case will be denoted by case "b"). Since both relaxa-

tion processes begin from one level, then in this zone the curve of case

"_" will lie below that of case "b". In the second zone it seems that

the intensity of the stresses for case "b" is greater than that for "a".

This may lead to the fact that the relaxation curves begin to converge,

then they may intersect and, further on, curve "a" can go higher than

curve "b" (see Fig. 1). But since curve "b" has a horizontal asymptote

of _-_ = 6-8 /2, then if even such an intersection occurs it will imply

that further on an another intersection of both relaxation curves will

occur and curve "a" will necessarily go below curve "b" (the asymptote of

curve "_" is the time axis). All the above mentioned points are related

to the case when the relaxation process begins with _o > 6-8 .

Fig. I

When _ro < _e 9 two oases are possible:either curve "a" goes

above "b" or vice versa. The limiting conditions will be those where

both curves emerge from point _o with equal inclinations. In this

limiting condition, @2 (0) of case "_" should coincide with _2 (O) of

case "b". Then, from (1.7) it follows that I

where

% >do >%12

It is easy in certain cases to prove that equation (8) may or may not

have roots in the necessary range.
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For the case when the exponential relationship has the form

f (z)-= x" (9)

equation (8) will have roots at ,

k_ -_ 2._ (lO)

%

¢

Fig. 2

Therefore, if K _ K_, curve "s" will always lie below curve "b"

At K>K_, there are two values of 6"o(_o (K) and _ (K)) dividing the zone

of the initial values of 6"o into three zones (see Fig. 2). At go<_",

curve "a" will always lie below curve "b". At _$ >¢ro>_$, curve "b" will

lie firstly below curve "a", then both curves will intersect each other

and curve "a" will diverge below curve "b". At _° >_ , the process will

be either as previously described (see Fig. 1), or it may happen that both

curves may not intersect each other. Let us analyse in details this latter

case. Since at _r=> _ (independent of whether _o is greater or smaller

than % ) a double intersection of curves "a" and "b" (see Fig. i) may

take place, or no intersection may occur at all! then, the limiting case

may be that when A and 8 coincide. Thus, due to the smoothness of the

curves, there will be a tangency, i.e. the following condition will be

fulfilled :

where _ is the value of _ corresponding to the moment of tangency

of the curves. Moreover, the zimes needed for the fulfilment of this

point for the compared processes will be equal, i.e. I

6 o

6. d_ i _

t, i/(o' -
_l ' dz

d6z
(].2)
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Since even for a relationship of the type (9) the general case of equation (12)

could not be integrated in elementary functions, a detailed analysis was

conducted by numerical methods on the digital computer "NAIRI". For the

given o-e (or 9) it is possible from systems (ll) and (12) to determine

_s as a function of the parameters included in f . For equation (9), the

relationship between go and K is derived. It can be noted that in this

case, _S enters in this relationship as a simple multiplier, i.e.

_o =_ 6-81_ (K). Moreover, at K<_(_, functions _ do not exist, whereas at

K>K_, go'>_o. The calculations have shown that O-o increases with the

increase of K. The limiting value of K is determined from the condition

_o-_co. Then, instead of (ll) and (12) we have the following system =

I du-J
_a z_ (z._l)(.__., I) "_

where the replacement _z = O'e _ and _z =G9/_ was made. _iand K are

determined from (13), which we denote by K2. The calculations have also
shown that

2.'72 (14)

Consequently, at k > g_the case shown in Fig. 1 may take place at any _o>c_. At

K_k_, _ can be always found, such that at_.>_ _, curves "_" and "b"

woula not intersect, whereas at _._ 6o_6., a double intersection of

these curves may take place (as shown in Fig. i). Therefore, g._ is

determined from systems (ll) and (12) at the given value of K, and corres-

ponds to the initial stress at which curve " " is always located below

curve Ub". But the tangency of these curves is clear in one point.

Therefore, all the possibilities were investigated for a relationship

of the type (9). A similar analysis was conducted when the maximum tensile

stress was considered as a determining factor, and it was proven that

all the above indicated features are valid. The conducted analysis has

revealed the basic features of the shells behaviour in the case of the

combined action of internal pressure and axial relaxation. It has also

allowed to estimate the variation of the stress state with respect to time

under such conditions of operation, and the study of the creep strength

on testing the sets of the Koffin type. The experimental investigations

conducted in the IVT laboratory on similar sets have proved the validity

of the obtained estimates. Moreover, these investigations have highly

improved the accuracy of the analysis of similar effects, studied in _l].
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A series of experiments was conducted on a set of the Koffin's

type for the determination of the characteristics of the creep strength

under different conditions. Cyclic tests were conducted (with a base of

6 hours) on tubular specimens loaded internally by a constant pressure

under the conditions of axial relaxation. Let us consider a single method

for the estimation of accumulation of damage under the indicated conditions.

It will be assumed that the kinetic equation for the damage parameter _

written for the principal directions, has the following form •

where _K is the principal stresses and _ is the intensity.

Moreover, the relationship with 6_ can have the character of the

relationship with a combination type ol_ _K + I_ 1 •

For the un_axial case and a constant stress, this equation leads

to the law of linear summation of damage. In the conducted tests, the

specimen exists under the conditions of a plane stress varying with time

and from one cycle to another. For the determination of the simplest

value, it was assumed that the variation from one cycle to another can

be neglected. Actually, as shown by experiments, the first two-three

cycles are only different. Further on, a condition prevails when the

residual deformation becomes practically the same from cycle to another.

Since in the specimen, only _Q and _ are actually different from zero,

equation (15) can be written in the form I

It is then possible to find an exact solution for equations (16). Inte-

grating equation (6) and substituting the parameter 6"Z = _. (t) , we get

_c3Q and & _Jz for one cycle. It is also possible by _he use of the

experimental values of the parameters _ (t) to get similar values for

the damage increments.

o | 7 3 _ S

Fig._____33

¢ hour
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Since for the first version it is necessary to know all the charac-

teristics of creep, and since it is impossible to determine them due to

the insufficiency of the experimental material, then the second version

should be considered. From practice it follows that under the conditions

of the conducted experiments the relaxation curve can be represented in the

form shown in Fig. 3 for a steady cycle state. In the conducted series of

experiments, 6"o was varied, whereas th_ difference _-_o/2 remained

constant since the same _zo(0.9 . lO--j, corresponding to the conditions

of the tests ( _o-- &e/2 == I0 kg/mm z ), was given! ge was varied in the
experiments from 6.6 to 7.7 kg/mm . Due to the insignificant variation

of the _ curves, _ (t) proved to be similar for different values of ge •

The characteristic relaxation curves are represented in Fig. 3. These

curves are taken for a specimen with 6_ = 7. I kg/mm 2 • They indicate the

gradual acceleration of the relaxation process from one cycle to another,

and, consequently, the decrease of the stress intensity. Let us move to

the estimation of the obtained experimental data.

If we assume that for all the cycles of the tests there is a similar

relaxation process, as shown in Fig. 3, curve 3 (which is an evidence of

the decrease of the intensity of pressure), then the equation of relaxation

of the axial component crz2 can be conditionally written in the form of

a displaced branch of a hyperbola

%2 =(z + °'_)-_ where O_T _< _; (hour) (17)

Then, at

r=o , _z2 = io_/m,_ 2 ; t=6 , _2 =°'i6 %/row

For the approximate determination of the stress intensity, the value of

the equivalent axial stress er_ is introduced, which is defined as the

average with respect to time

T

- + c_-)Ja r (l_)}I+++,

For specimen No. 8, for which 6+ 6.6 kg/mm 2y we have I

%¢ = 3.3 kg/mm ;

6 _. = 5. B _g/mm .
&
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For specimen No.ll, for which _@ = 7,7 kg/mm 2, we have s

9

= ,,.$6
_-

_e

3 L ..... ,

spec+_0 spec•o

Fig. 4

Let us compare all the obtained values with the data of the creep

strength determined under other conditions. In Fig. 4, a graph is

plotted in the logarithmic coordlnatesz the intensity of pressure and

log time. The straight line 1 corresponds to the tests carried out on

creep strength without pause, whereas line 2 corresponds to the tests

carried out with 6-hours cycles. If the experimental points are plotted on

this graph, taking _ into consideration, as calculated from equation (18)

and from the obtained value of _ , then the experimental points will lie

above line 1. If we consider that all the values are determined only by

the maximum tensile stress, i.e. in (16) n I = O, then the experimental

results will be in good agreement with the straight line 2. The last

statement is in perfect coincidence with the results of the series of

experimental investigations previously conducted in the IVT laboratories

on the same material. Those last investigations have shown that the

criterion of maximum tensile stress is determinant in the estimation of

the creep strength under complex stress states.
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THE RELATIONSHIP BETWEEN THE LIFE 0P MATERIAL

AND THE LEVEL OF CREEP STRESSES IN THE CASE

OF COMBINED LOADING

G.A. Tulyakov, G._. Mel'nlkcv and Yu.D. Starostin

The investigation of the life of material under the conditions of

combined action of thermocycling and creep, has shown that the service

life of the material is determined by the sequence of application of

different groups of loads, prehistory of loading (duration of the previous

stages of loading) and, to a large extent, by the level of creep stress

[1,2J.
As a result of the study of the processes of accumulation of the

damages and failure of austenitic steel (KhI8NIOT), two principally

different zones varying with the level of static loading were established []].

Under low stresses, i.e. relatively long duration of the experiment, the

most intensive process of accumulation of the damages produced from

thermocycling and static loading was observed. This process is "located"

mainly along the grain boundaries. As a result, a significant decrease

of the absolute as well as the relative life of the material occurs

independent of the sequence of application of loads.

Under high stresses an intensive strain hardening takes place inside

the grains due to thermocyclic deformation and the accumulation of damages

inside the grains, as well as along their boundaries (due to creep). In

this case no actual accumulation of damages occurs since, as shown by

metallurgical researches, an intrograin failure is basically produced.

As a result, a remarkable increase of the relative as well as the absolute

life of the metal is observed under the conditions of initial thermocycling

due to the strain-hardening processes.

Proceeding from the date of the indicated works and from the results

of investigation @f the mechanisms of accumulation of damages in the

structural material it is possible to assume that the relationship between

the life of the material in combined loading and creep stress should have

extreme values corresponding to the maximum and minimum life capacity.

The correctness of the above stated assumption can be also checked

on a family of curves, described bF equation (1) [2] :
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If the left hand side of equation (i) is expressed as a function of creep
stress, the graph of the family of curves will acquire the shape shown

in Fig. i, independent of the sequence of application of loads and their

relative magnitudes.

In the general case the family of such curves can be described by

the following relationships

(2)

where g_ and 6-2 are the roots of equation (2), and

K, _ , _ and _" are constants.

In certain oases, equation (2) (of curve (a) shown in Fig. l) can

be represented in the form of a family of two equations at a relative

initial creep of _ = 0.43 :

for 6 ..<16

' ; (3)

for6 _ 16

j','gl6 5r(_)=-I,105.,0"/6-16 -_21 s_#_[C_-,6)(6-_cz)]÷ I (4)

Curve (b) (see Fig. i), with a preliminary relative number of_ = 0.57

for the initial thermocycles, can be described by the following system=

for6.._15

for_>l 5

1,0¼ (5)

(6)

It is therefore clear that a significant increase in the relative life

of the material corresponds to a relatively high level of creep stress

exceeding the yield limit of KhlSN10T steel at the given temperature

(the test temperature was 600oc). This increase in the life of the

material is, as stated above, due to the processes of intrograin thermo-

cyclic straln-hardening. This is the reason why such an increase is most

clearly revealed under the conditions of initial thermooyoling.
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For creep stresses lying in the range of 8-12 kg/mm 2, which is

very close to the stress level of many elements operating under stead_

power machinery, a minimum relative life is observed, which is slightly

dependent on the sequence of application of thermocyclic and static

loads. The least life capacity of the material in this zone is condi-

tioned by the processes of intensive actual accumulation of damages.

aJ

!

Fig. 1

Graph of the relationship between the life of the material in combined

loading F(_) and the level of creep stresses g z a- is the value of

initial loading at a relative initial creep of _ _ 0.47 (- - experimental

results)! b - is the value of initial loading by thermocycling, N . O. 57

(o - experimental results).
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ABOUT ONE METHOD OF ESTIMATION OF LONGEVITY IN THE

CASE OF THE COMBINED ACTION OF CREEP AND THERMAL

FATIG 

By

G.A. Tulyakov, Yu.D. Starostin and G.P. Mel'nikov

A method was previously suggested for the estimation of life of

elements and aggregates of power machinery operating under the conditions

of creep and small thermocyclic fatigue[ 1]. This method is based on

the summation of relative lives, using the general form of linear law,

expressed by the following relationship :

+ (1)
A_p T_p

where A/_ is the number of cycles in the experiment

Nip is the number of cycles leading to damages ;

T_ is the creep time in the experiment;

and T_p is the failure time.

At the same time, the results of some works[ 2,3,4] have shown that the

data obtained from the experiments on creep and small cycle thermo-

mechanical fatigue are highly different from linear summation. If the

right hand side of equation (1) is denoted by the parameter of life "A",

the results of the above mentioned experiments can be expressed as A>l,

in the case of stralnhardening of the material, and as A<l, in the case

of its softening (with respect to linear summation).

An investigation of some aspects of life in the case of combined

action of static and thermocyclio loading is illustrated below.

The analysis of the experimental results [3,_ has shown that the

process of development of damage is highly dependent on the amplitude

level of the thermocyclio and static stresses, as well as the sequence

of their application. It follows, therefore, that the graph of life

performance, expressed by the relative coordinates _ = _-_ and T= r_
N'zp "Cip '

can be approximated in the form of a family of curves, symmetrically

located on both sides of the straight line, for which (in certain cases)

the law of linear summation (1) is valid.

In the general case, the equation of life for the complex action of

thermal fatigue and creep can be represented as a family of parabolas :
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where 0.< I@I_ "2- is the coefficient of summation characterizing

the degree of deviation of the relative life obtained from the linear

law under the conditions of strain hardening and softening of the

material. The value of this coefficient depends basically on the

sequence of application of different types of loads, as well as on the

level of stresses and the material. At c_ = O, the family of curves

converge to an equation of the type (1).

The applied relationship of life was experimentally checked on thin-

walled tubular specimens (4_14xl) of Khl8NlOT steel in the case of coin-

oidence of the lines of action of the principal stresses arising due to

static and thermocyclic loading. The program of loading of the specimens

was as follows :

1. Initial thermocycling, given the number of cycles in the interval

(O.1 _0.9) Np, then static deformation up to failure.

@
B_I :xporp_a-

!

m

VV"_ _ --

Notes:

®
Ho_ep

pez<_Ma

,)

I
2
S
4
O
8

7

S
O

lO

Table

_ He..,4-'_zxo-
}me _on3_d'-

Kr/M._ tt

24
18
18
14
14
IO

18
14
IO

14

_ n.eCop-
Ma.tm_

3a

Ae

%

0,73
1,2

0,75
1,2

0,73
0,75

HOCT_

**)

A¢ o

],4
1,7
1,5
1,27

1,02
0,88

0,78

0,75

0,78

esT cyM-

w_po_a_

C(

u

m

+0,.23
0,0

-0,12

+0,17
-.0,18
-0,20

1,2

0,82

0,78

0,84 -0,14

I

*) In each case, different versions of specimens (9-16 specimens)

were tested for the given number of thermocycles (N_) or creep time (T_)

**) This parameter was determined as the arithmetic average of all

the tested specimens.

_mm I- Form of the test program; 2- Number of case; 3- Creep stress (_);

2; __ Deformation for one cycle (Ae), %; 5- Life parameter (Aav) ; 1
6 Coefficient of summation.



- 97 -

2. Deformation under static loading, given the duration of applica-
tion of load in the interval (0. I - 0.85)Opthen thermocycling up tofailure.

3. Ynterchangeable application of thermocycling and static loading.
The conditions of testing under stresses and strains are given in

the previous Table •

The staic deformation was conducted under constant loading and a
temperature of 600oCin the stress range of 10-24 kg/mm2. The thermal
fatigue was tested by heating a rigidly-fixed tubular specimen (the
coefficient of rigidity is 4.6) by a current of industrial frequency and
its cooling by compressed air, introduced in the internal cavity, with
a zigzag cycle of temperature variation. The upper cycle temperature
was constant (600oC), whereas the lower one was varied within the range
of lO0-300oC to provide_the f_ilure of the specimens in the zone of the
small cycle fatigue (lO lO cycles). In this case the deformation
parameters of the cycle (in the calculated elastoplasti¢ deformations)
were used as principal parameters.

_g

0 o,8 /,2
_ig. 1

The analysis of the results of the combined tests in all the three

programs is shown in Fig. I in the form of life diagrams. These diagrams

indicate that in the general case the summation of the relative lines does

not follow the linear law.

The magnitude of the parameter of relative life varies widely in

accordance with the test conditions (see the Table). In all the cases

a d_ep in the relative llfe is observed with the decrease of the loading

parameters of the tests (creep stresses and amplitudes of thermocycles).

In the case of equal values of loading parameters (oases No. 5, 8 and lO)

the test cases with initial creep lead most dangerously to the utmost drop

of relative life. The life in the case of tests with interchangeable

application of static and cyclic loading occupies an intermediate position.
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The effect of the sequence of application of different loads

(static and thermocyolic) is very clearly shown in the case of high

values of test parameters, and less clearly pronounced with low values

of these parameters.

The experimental results have shown that in the range of static

loads below the thermal limit of steel yielding at 6OOOC, i.e. under the

conditions when the creep process is actually realized, they are

satisfactorily described by equation (2) with a deviation not exceeding

15%. In this case it is observed that the damages produced from creep

and thermal fatigue are summed up. This process proceeds in the case

of strainhardening and softening as compared with the linear law.

Under the conditions of creep of initially thermocycled specimens

(the 1st pro_ram, cases No. l, 2 and ]), for static load stresses of

_18 kg/mm _ , the experimental results cannot be described by equation

(2) due to the intensive strainhardening by thermocycling (increase of

the absolute life) ocouring basically inside the grains.
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ABOUT THE UTILIZATION OF SAN-VENAN'S CRITERION FOR

THE ESTIMATION OF LIFE IN THE CASE OF THER_J_ FATIGUE

UNDER THE CONDITIONS OF COMPLEX LOADING

G.A. Tulyakov and V.A, Metel'kov

In TsNIIT_Sh, some tests were conducted on austenitic steel

(KhlSNIOT) for the investigation of thermal fatigue under tension and

compression when the deformations are given at a constant ratio of the

angular and axial components. The tests were conducted on specially-

prepared e_ipment Ill. The ratios are as follows

Re = &_x (tension and compression), 0.7, 1.0, 1.5, 2.0, _.0

and co - (pure shear).

The failure criterion was taken as the number of cycles up to the

formation of the first macrograde. In the case when the parameters are

given in the range of 650 - 150°C, the failure takes place in the range

of 2xlO2--2xlO cycles.

During testing the diagrams of thermocyclio deformation were recorded.

The obtained experimental data [2] on thermal fatigue at different

Re = _ ¢x ratios have allowed to plot the relationship between the

number of cycles and damage A/ in the form of paired functions on the

variation of the axial and angular deformations for one cycle (see Fig. i),

which are approximated (in logarithmic coordinates) the straight lines

and which can be described by the following equations :

A%N = , (1)

where KI, K2, C1 and C2
are constants.

(2)
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Curves of thermal fatigue

a) with respect to axial deformation in one cycle; . . __.

o- _te= O, V.Re= 0,7, O-_e= |,0, V-_e= 1,5, e-_e= 2_0,¢ _e-._,O

b) with respect to angular deformation in one cyle !
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Fig. 2

Curves of the variation of stresses in one cycle with respect %0 the

number of thermocycles.

iv tension (compression), Re - 01 2- torsion, Re = 5.0!

3- tension (compression), Re = 5°0! 4- pure shear, Re = co.

Fig. 2 shows the variation of normal and tangential stresses in one

cycle at different values of Re. It is clear that after the lapse of a

certain number of cycles (3-10_ of that corresponding to failure) the

stresses are stabilized and remain practically constant up to damage,

whereas the values of the observed cyclic strainhardening along the

tangential and normal directions are of the same order of magnitude

Consequently, if we pay attention to the fact that the curves in Fig.1

are practically parallel, it can be considered that the mechanism of

plastic deformation is similar for the investigated cases and that in the

course of the experiment the ratio nrx_ /n6- x (taken for the extreme

points) will remain constant. This will permlt to plot a generalized

curve for the thermal fatigue using as a criterion for strength any para-

meter of the stress-strain state in accordance with the adopted hypothesis.

Since the failure in thermal fatigue is a process of accumulation

and development of plastic deformations, then it is natural to assume that

the most convenient criteria are the generalized conditions of San-Venan

and Mises.
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Diagram of the limiting amplitudes of thermocyclic deformations!

• - experimental points, i- curve calculated according to the

equation 6e_q. = _ 2D me x + -_A ?#y , 2- curve calculated according

to Oding! 3 - curve calculated according to Sau-Venan! 4- curve

calculated according to _[ises.

Fig. 3 shows the diagrams of the limiting amplitudes of deformations

for the lO00 and 5000 cycles before failure. It is clear that the

experimental data are near to an ellipse corresponding to San-Venan's

oond_ition. This confirms the known proposition [3,4] that in the case

of developed plastic deformations San-Venan's condition describes the

experiment better than Mises's condition.

However, by examination of Fig. 3 it can be noted that there is no

full correspondance of San-Venan's condition to the experiment for the

determined values of the coefficient of deformation. This is apparently

explained, first of all by the fact that in the process of thermocyclic

deformation the initial properties of the material will vary, i.e. in

each /V_ cycle we have a material whose physicomeehanlcal properties

differ from the properties of the material in the A/_._ cycle. A metallo-

graphic research work was conducted for illucidation of the possibility

of activation of the new processes in the case of variation of the type

of the stress state in the structure of the material. The results of

this work have proved the absence of any processes different from those

observed in the case of a linear uniaxial stress state.

Apparently, such factors as= the anisotropy of material in micro-

volumes (it was not observed in macrovolumes), the locality of flow of
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the processes of plastic deformation, and the noncoincidence of the
principal axes of stresses and principal deformations, have an influence
on the character of flow of the process of plastic deformation under
the conditions of complex stresses and thermal fatigue, as well as on
the experimental results.

Consequently, for a more precise estimate of the criteria of
thermal-fatigue failure in the case of a plane stress state, a parameter
taking into consideration the behaviour of the material in the process
of thermocyclic deformation should be included.

In his time, Oding [SJ suggested to correct San-Venan's condition

by the corresponding coefficients for the consideration of structural

factors and the nonhomogeneity of distribution of stresses related with

them. These coefficients take into consideration the different effects

produced by the action of the tangential stresses.

The utilization of Oding's theory, transformed in deformation, did

not produce the required effect (see Fig. 3). The observed deviation is

apparently due to the nonhomogeneity of the flow of plastic deformation,

as well as to the s trainhardening of the material in the process of

"co mpl ete de formation".

Taking into consideration the last factor, the condition of strength

can be written in the following form z

where

2aeox (4*q)

d_ox _ and neo× are deformations in the case of limited (by the number

of cycles) ranges of fatigue, corresponding to the case of pure shear as

well as to tension and compression; _ is the relative value of strain-

hardening (in our case _ _ O. 12).

As shown in Fig. 3, the corrected curve obtained by calculation, coincides

quite well with the experiment. This allows to utilize the suggested

criterion for the calculation of the life of material in the case of

thermal fatigue under the conditions of complex stresses according to

the following equation s

Zhee_ x /g _ = C3 (4)

where d_q. is determined from equation (3), and Ksand C_are constants .
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It was shown experimentally that for Khl8NlOT steel, in the case

of a maximum cycle temperature of 6500C, the values of the constants

in equation (4) are K3 = 0.34 and C3 = 8.7.
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ABOUT ONE POSSIBILITY FOR THE DESCRIPTION OF THE

LAWS OF CREEP

i.I. Trunin

It was previously shown [l-3J that, from the mathematical point

of view, many relationships obtained in the analysis of various physical

models of development of plastic deformations and failure under the

conditions of creep [4-6J, are particular cases of one equation, which

for the minimum creep rate and failure time can be correspondingly

represented in the following form I

,. o [_ ] (1)
RT '

where £ is the minimum or average creep rate! rx is the time

of failure! T is the absolute temperature! R is the gas constant!

_o is the nominal stress! A, B, m, n,T ,F_, He and _o are para-

meters characterizing the individual features of the material.

Usually, the creep tests, particularly on complex heat-resistant

alloys and steel, are conducted under a constant load. Consequently, in

utilization of _o in equations (1) and (2) it is necessary to take into

consideration the variation of the cross sectional area _ due to creep

deformation.

The even plastic strain £ leads to the decrease of _ and, conse-

quently, to the increase of _o by ¢6 times.

= e (3)

The effect of plastic strain on the rate of creep is not limited

by the increase of nominal stressest the plastic deformation leads to

strainhardening as well as to softening, and stimulates the development

of failure.

The resultant value of plastic deformation consists of an active

component arising in the specimen with the application of load, (E_) and

a passive component induced in the process of creep (£p)

E=£o +£p
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Each of the components of plastic deformation can influence the develop-

ment of creep[4] in many ways, i.e. it is convenient to express the role

of each part in terms of independent parameters.

The resultant influence of the factors of softening and the develop-

ment of damages can be represented by the introduction of a constant

parameter "_" in equation (3).

_E=  'oe (4)

In reference [&] it was shown that the effect of the stralnharden_ factors
can be very precisely represented by the introduction of a term of the

form 6-_ in the equation of creep rate.

Therefore, the equation of the type (1), in which the creep rate in

the yield point of the curve (see Fig. l) is introduced instead of the

minimum rate, can be represented in the following form :

(5)

Equation (5) is one of the possible forms of the equation of state [ 4 ] .

The parameters of this equation reflect the influence of the basic factors

determining the physical laws of the processz

_o represent8 the effective activation energy of creep occurring

in the macrovolumes of the material, B is the parameter representing

the effect of interatomlc distance, period of thermal vibrations of atoms

and entropy of state [7, 8, 9, lO] , _ is the activation volume of the

creep process in the macrovolumes of the material, _ is a parameter

representing the resultant effect of strainhardenlng factors, w is a

parameter representing the resultant influence of the softening factors

and the development of mlorodamages.

C

&

j/
..... !4 ¸ .

..... .J

Time

Fig. I

Initial creep curve at T - const and 6-o - const.
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The results of the creep tests (each point is determined by

T, _o, _, Eo and E,p ) were mathematically treated in some range of

temperatures and stresses. Therefore, the optimum values of the six

parameters of equation (5) were obtained. This equation characterizes

the structural condition, and represents statistically the role of the

basic micromeohanisms in the development of plastic deformation and

damages in the macrovolumes of the material.

The experimental data providing the determination of the values of

coefficients were treated by the method of least squares using a digital

computer.

By getting the value of the six parameters of equation (5) it will

be possible to describe the creep process in all its stages. Integrating

equation (5) at T _ const, e-o - const and Go = const, we get an expression

for the determination of time, in the course of which the creep deformation

attains a value of £

(6)

It is possible to conduct the necessary calculations for plotting the

initial creep curves by the method of numerical integration using the

digital computer.

Processing and analysing the results of testing perlitic as well as

austenitlo steels has shown that the values of the parameters of equation

(5), determined according to the elaborated program, represent, to a

sufficient degree of accuracy, _the laws of creep.

B,-2u,/ ..

' ' f"'"l! ¢
! !

11| 2_ ._O T.houLr

Fig. 2

Initial creep curves: 15KhIMIF steel, ttest 540oc and _ = 32 kg/mm 2

--experimental curves, --- calculated curve.
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Fig. 4

Initial creep curves, 15KhIMIF steel, _ = 585°C and
est

experimental curves_ ---- oalculate_ curve,
_o = 24 kg/mm 2,
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Initial creep curves: 15KhIMIF steel, t -= 58500 and
-- test

experimental curves, - calculated curve.

_ = 20 kg/mm 2,

For example, the experimental creep curves of steel of the perlitic

type (mark 15KhIMIF) are shown in Fig. 2-5. The tests were conducted at

three levels of temperature, and 3-4 speoimen_ were tested in each case

(at T = oonst and o"*o= const).

The parameters of equation (5) were determined from the results of

the tests at the following four temperatures, 540, 565, 585 and 610oc.

In Fig. 2-5, the solid lines represent the experimental creep curves,

whereas the dotted lines represent the corresponding calculated curves,

plotted according to the following equation

_,p(,2,g2)T -_ _'." _o,.

. 93,2 ." 26. ,,p 7,s )]

The data in Fig. 2-5 allow to note that in all the cases the calculated

curves represent, to a sufficient degree of accuracy, the development of

fatigue in all the stages of the process.

Consequently, it is possible, in a certain range of temperatures and

stresses to utilize the constant values of the parameters of equation (5)

for the description of the creep process.

If the parameters of equation (5) are separately determined for

different stages of creep, it will be possible to obtain additional infor-

mation about the accumulation of damages and activation energy in the

different stages of creep,
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Assuming in equation (6) that £ _ E_ (the creep deformation prior
to failure), it will be possible to determine the corresponding life
( r_ ). In utilization of equation (2) it is implicitly assumed that the
value of plastic deformation in failure is constant. The deviation of

the individual values of £p from the mean values is often insignificant.

Therefore, by the aid of equations (1) and (2), it is possible to obtain

quite reliable estimates. In those cases, when the indicated condition

is not fulfilled (for example, the value of E_ decreases with the

increase of service life and decrease of _o ), equation (2) can give a

low estimate of the mean life, i.e. the factor of safety is increased.
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THE EFFECT OF THE STRUCTURE OF MATERIAL ON CREEP STRENGTH

V.D. Kurov, G.P. Mel'nikov and A.A. Sokolov

One of the possible methods of description of life under the condi-

tions of creep consists in the introduction of the parameters of state

when a certain relationship is drawn between temperature, initial grain

size in the structure of the material, level of stresses and failure time

In the TsNIITMASh, investigations were conducted for the determination

of the creep strength of Khl8Nl2T steel under steady state conditions

and different grain sizes in the temperature range of 600-650°C [1].

The average experimental results are given in Table 1 .

For the estimation of the material and solution of the optimization

problem, let us utilize the method of statistical planning of the experi-

ments. The use of progressive analysis in the treatment of the results

allows to determine the extreme values of the parameters of the process

model. For establishing the plane, the curves of creep strength, extra-

polated from the data included in Table i, were used.

Moreover, the results of the creep strength experiments were intro-

duced. These experiments were conducted under variable temperature-loading

conditions on tubular specimens of KhlSNIOT steel with different initial

s truc ture.

The factorial experiment 23[ 2] lies in the foundation of the utilized

method of statistical planning, i.e., three parameters are varied on 2levels
of each .

temperature s t = 600 and 650kCjmm2stress z _ 20 and 24

grain size according to GOST No. z d - 7-6 and 3-2.

In the factorial space, the variables are replaced in the following

form :

where xj _ the coordinates of the experimental points in the new

sys tern!

_ ks the initial coordinates corresponding to the natural values

of the parameters!

_jo is the basic level of the factor!

&_ is the interval of variation.
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!(_ TeM-pa
HCI'IbfTDS.

600

Hanp_on.o
6 Kr/_4M=
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24

26
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461
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4 - 5 925

46O
3 - 2 1100

7 - 6 191
24 2

18

7 - 6 70
98

20 4 - B 127
225

J 3 - 2
]02
207

Key= l- Test temperature_ toc_ 2- Stress, _ kg/m_2_ 3- Grain size, dr

according to COST No; 4- Time of failure _C , hours.
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As a result, we have :
for the temperature

for the stress

x4 _ ___5 _ (3)

for the _rain size

= _ (4)X 2

x3 = d-5 (5)

The obtained values of the new variables have the property of orthogo-

nality, and are represented in a matrix form in _able 2.

If the symbols of the new parameters indicate the transformed values

of the initial parameters, the following regression equation will be
obtained z

(6)

where the values of the coefficients of equation (6) are determined from

the following equation :

where _ is the number of experimental points;

j is the number of variables in the regression equation.

From the solution of equation(7) and transformation of equation(6) , the
regression equation can be converted to the following final form:

'Yc.,Z, = 'T'-.ca_= "7_8 - E._.?y,:- 553 x_'__57_s +
(8)

For the investigation of the surface of equation (8) it is necessary to

solve the system of nonhomogeneous equations I

(9)
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The solution of system (9) gives the values of the unknowns corresponding

to the least life I

X_ = O. 62 ; X2 _-- _.5 )

which denotes that t - 640.5°C; 6 - 25 kg/mmY"_

scale.

For checking the influence of the structural state of the material of

construction on creep strength under the conditions of varying the duty

of the type "starting-stoppage" [3J, tests were conducted on tubular

specimens (36 x 1.O), made of Khl8NIOT steel, under an internal pressure

and a temperature of 750°C. The tests were conducted on specimens with

an initial structural material corresponding to the 6-7 state of delivery

on the COST scale and heat-treated in vacuum (lO mm mercury column) at a

temperature of llOO°C in the course of 2 hours, which corresponded, as

a result, to a structure with a grain size of 4.

T -- i-¸.

lO _ _1 Bou_r i_ r

Fig. 1

Creep strength curves: i- steady duty, heat-treated specimens! l'- variable

duty in the course of 6 hours_ 2- steady duty, untreated specimens! 2'- variable

duty in the course of 6 hours.

For each pair of the obtained curves (see Fig. I) it is possible to

derive a relationship for life in the case of a variable duty

where _o is the level of stress corresponding to the point of inter-

section of the curves of steady and variable cases of loading.

n4 and n 2 are constants characterizing the inclination of the curves of
creep strength.
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The comparison of the experimental results have shown that the life

of specimens with large-grain structure significantly increases. A con-

ditlon of the type "starting-stoppage", decreases the service life of the

material as compared with the steady duty case. The angle of deviation

of the curves of creep strength for specimens with an initial structure

of the material (6-7 on the GOST scale) is larger than for the heat-

treated specimens. This shows the low performance capacity of the cons-

truction material with a small grain size. This is clear from the graph

and the following relationships s

t6 _o,o6

(n )

where the first equation corresponds to curve l', whereas the second

one corresponds to curve 2'.
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THE EFFECT OF HYDROSTATIC COMPRESSION ON POROUS MATERIALS

A.M. Lokoshchenko and E.A. _yakotin

The analysis of the process of packing of different media has been

the subject of the study in many works [1-3]. In these works, experimental

investigations were basically conducted, where the specimens were loaded

in a closed space by a moving piston, or in an elastic shell by hydrostatic

compression. The last method has proved to be extremely effective, in

particular, for the increase of the strength of cement stone [4], namely,

in the case when its initial porosity is very high.

Different emperical formulae were suggested for the description of

the relationship between the density of pressing _ and the magnitude of

pressure. The following are the most reliable formulae :

A theoretical model of the process of packing of a porous material

(the initial porosity may be tens of hundredths) is described below.

This model allows to draw the relationship between a certain density para-

meter of the system and the external hydrostatic pressure. It is con-

venient to use the relative density _ (i.e. the ratio of the volume of

the solid phase to the overall volume) as the density parameter.

The model is based on the assumption of correct packing of equal

isotropic incompressible balls of very small radii, and of the indepen-

dence of the density of packing of the form of the boundary surface. The

simple cubic and pyramidal forms are considered. These forms, which are

known systems of regular packing of equal balls, are supposed to have

limiting values of density [511 their relative density is _cr_ _/6_0.52

and _pr = _/3 _-2_0.74, respectively. If on the surface, limiting the

system of balls, a hydrostatic pressure p is applied, then contact forces

N will be exerted between the balls. From the condition of symmetry,

these forces should be equal to each other and should be directed along

the lines of centres. Contact areas are formed around the initial points

of contact as a result of these forces. In addition, these areas are

located in planes perpendicular to the centres lines, and represent

circles with radii a. As in [6] it will be considered that apart from

the contact areas the surface of the spheres will maintain its spherical

form. Therefore, as a result of deformation, each ball with an initial

radius Ro will acquire a spherical form of a radius R_ Ro, with a number

of n "cut" spherical segments equal to the number of contacts (for cubic
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packing, n - 6, and for pyramidal packing, n = 12). Figs. l and 2 show
the elementary cells out from the corresponding cubic and pyramidal
packages.

From the condition of incompressibility of the balls material it is
possible to draw the relationship between the current ball radius and
the dimensions of the contact areas. Denoting the volume of the ball
segment by V, the condition of incompressibility can be expressed in the
following form I

(2)

By analysing the elementary cells it is possible to calculate the

relative density after deformation. Taking into consideration the con-

dition of incompressibility (2), it is possible to determine the relation-

ship between the relative density of the system and the degree of defor-

mability of each ball element. Let us denote the degree of deformability

by A - _/R (a . the radius of the contact area and R = the radius of the

ball element). Accordingly, we get :

, (3')

(3")

there and further on, the case of cubic packing will be denoted by ('),

whereas that of pyramidal packing will be denoted by ('').

P

Fig.l

Elementary cell of cubic packing

in the process of deformation by

hydrostatic compression.

> I

Fig. 2

Elementary cell of pyramidal packing

in the process of deformation by

hydros tatic compression.
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The relationship between the hydrostatic pressure p, the contact
force A/and the parameter /_ is derived from the condition of equilibrium

of elementary cells

N'4pR _(i-_'_ , (4')

N_,I-_PRkL:A"_ (4")

Each of the systems (3') - (4') and (3") - (4") will be closed if it is

suplimented by the relationship between the contact force N and the geo-

metric parameter A. This relationship is determined by the type of the

stress-strain diagram of the balls material. Let us assume that the

diagram has the form of an "elastic-ldeal plasticity". Moreover_ we

may neglect the elastic deformations in the plastic zone.

For the zone of elastic deformation we may assume, as a first approxi-

mation, that for each contact area the relationship between its radius a

and the contact force /V follows the relationship of Herz [7]

=_N_ , e = 3c_- __ , (5)
hE

where 0 is a property characteristic of the material, determined by

Young modulus (E) and Poisson's coefficient (_) (since it is assumed

that the balls material is incompressible, then _ = O. 5).

Let us introduce the dimensionless pressure parameter q _ p @ and

determine the relative density _ as a function of 9. For this purpose,

we get from equation (5) :

N= _ (6)
O

SoZvin_equation(6)b_ther withequations(4')_d (4")we mt z

_-h

A_ (7")q-_- __-_-

Thepairs of equations (3') - (7') _d (3") - (7") transform the relation-
ship between the relative density _ and the dimensionless pressure _,

for the cubic and pyramidal packages in the case of ideally elastic balls,

into a parametric form.

For an ideally plastic material it is assumed that the contact force

is proportional to the contact area

(8)
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where H is a constant characterizing the resistance of the ball material

to plastic deformation. Such a hypothesis is based, to a certain extent,

on the solution of Prandtel's problem [8] about the pressing of a flat

stamp into a plastic medium, where K (the yield limit) = (2 • _ )E o

Moreover, the elastoplastic contact of spherical elements was analysed

in reference[9]. It was stated that in the case of very high contact stresses,

when almost the whole contact area is occupied by the zone of plastic

flow, the magnitude of deformation is proportional to the contact force

which is similar to (8). In EIO], the results of the experimental investi-

gation of large local elastop1_st_c deformations are given for the case

of axial compression of a bar with a spherical end by a rigid plate. The

relationship between the value of deformation h _d the compressive force N

determined in the statistical tests, is approximated by the equation

h = _N n. For duraluminium specimens a value of n _ 1.15 was obtained,

i.e. a value very close to unity, which is also in accordance with (8).

Let us introduce a dimensionless parameter characteristic of the

material

(9)D- _Ke

Taking (9) into consideration, equation (8) will acquire the following

form :

N - _ a . (lO)
De

In accordance with the previously mentioned assumptions, the relationship

between A and q was obtained for ideally plastic materials by solving
equation (iO) together with each of the equations (_:)and (#) .

A - 4 O q (ll')

A_ = _ D9 (n")

The pairsof the equations(n'), (3')and (n"), (3") transformthe
relationship between _and _ for the cubic and pyramidal packages in

the case of ideally plastic balls, into a parametric form. However t we

have in this case, as distinguished from the case of elastic balls, the

possibility of deriving this relationship in a clear form. Excluding
, we get I --

_/_c_.__._d+4_)- _(_*4T_o,)_/_-_,_, (l2,)

•_/_p,.o 9([, ,I_ 1:)q')-5 (,[* F{ _Do,)V2- _.
(i2")
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Fig. 3

r

Theoretical curves showing the relationship between the relative density

q_ and the dimensionless hydrostatic pressure 9. For cubic packing :

l- balls of an ideally elastic material, 2- balls of an ideally plastic

material! for pyramidal packing : 3- balls of an ideally elastic material,

4- balls of an ideally plastic material.

The results of calculation of the process of packing of cubic and

pyramidal forms are graphically represented in Fig. 3. Curve 1 denotes

cubic packing of ideally elastic spheres, and curve 2 denotes the same

but for ideally plastic spheres (for the parameter D = 2). It is clear

that for ideally elastoplastlc spheres the initial part of the actual

curve will practically coincide with curve l, whereas in the zone of high

densities, it will coincide with curve 2 at the corresponding value of

the parameter D. For the case of pyramidal packing the corresponding

curves are denoted by the following numbers : 3- ideally elastic balls!

4- ideally plastic balls (for D = 2.9). The asterisks on the curves

denote the points corresponding to the moment when the neighbouring

contact areas on one ball coincide with each other. Beyond these points,

the curves are devoid of any physical meaning, since the initial relation-

ships are violated. It would have been possible to take into consideration

the change of the form of the contact area and extend the obtained curves

in the zone of higher densities. But since the obtained limiting points

correspond to Z_0.96 _ this will denote practically the attainmeat

of a zero porosity! therefore, there will be no need for any further

analysis.

The effect of hydrostatic compression on a porous material was

experimentally investigated on a test rig, in the operating chamber of

which it is possible to create and maintain a hydraulic pressure of up to

i000 kg/cm _ Cll]. The scheme of the operation chamber of the rig is

shown in Fig. 4.
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For the preparation of porous specimens, portland cement of the

marks 200 and 400 was taken without the addition of sand and coarse

aggregates. The addition of water was conducted at maximum water-

cement ratios, near to the water maintaining capacity of the taken

cements. The specimens were extracted from the moulds after 24 hours

and kept in the air at room conditions up to the moment of conducting

the tests. These specimens had the form of cylinders of 4 cm diameter

and 8 cm height. Before compression each specimen was isolated from

the compressing liquid by a rubber sheath. Three types of specimens

were subjected to testing

I- cement mark 200, squeezed ] years after manufacture!

II- cement mark 200, squeezed 72 hours after manufacture!

III- cement mark 400, squeezed 72 hours after manufacture.

i¸

Fig. 4

Operating chamber for testing the specimens by hydrostatic compression.

Up to the moment of testing, all the specimens had a relative density of

0.44 - 0.56. The relative density was determined by the method of water-

suspension in vacuum. The squeezing of all the specimens lasted for 20m_nutc_.
The compression in the chamber was given in the range of 50 to lOOOkg/cm •

Equation (12 '_)was used to describe the relationship between the

relative density t_ of cement stone subjected to hydrostatic compression

and the magnitude of the dimensionless pressure _ applied in that case.

This equation was obtained for cubic packing of ideally plastic balls.

As a result of testing the three types of specimens the following

initial values of rslative density (_), compressive strength (Ro),

modulus of elasticity IEc) _ pressure at the beginning of plastic deforma-

tion (9,) and the dimensionless parameter characteristic of material (D),

were determined from equation (9):
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_/_ cep_fl I [1 []

_! 0,53 0,44 0,56

Ro la'(_ M2 84 43

E_, K Mz 4,3" 10 _ 0,97"10 _

q. 2.1d o

"_ 5,6 2

lOO

7- 10 _

! ,2. I0 "_

24

_Key: I- Type of specimen; 2- kg/cm 2.

Actually, for the specimens of the second type (II) the value of qn

should be different from zero. But since the value of t_eir initial

strength was only _ 40 kg/cm _, it was found that qn_lO" . In the

given case, this quantity can be negleoted.

08

I

o.s° too 2oo joo _oo (_-_.).Io_

vi . 5

Variation of the relative density of cement stone specimens as a result

of hydrostatic compression: I (+) - specimens of cement, mark 200, three

years curing period! II (Q) - specimens of cement, mark 200, 72 hours

curing period; III (A) - specimens of cement, mark 400, 72 hours curing

period. The solid lines represent the theoretical curves.
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In Fig. 5 the theoretical curves of Z_ (4 - _n) are compared with

the experimental results of the three types of specimens (denoted by the

corresponding Roman numbers). The calculated data are in good agreement

with the obtained experimental results.
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